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Introduction. This is a new course, however, with some chapters from other
courses and some new material. It provides an introduction to combinatorial
and analytic number theory giving a survey of the most important results in
this area and the most successful methods.

The course will be on Thursdays from 11.15 AM to 1.00 PM, with the excep-
tion of 19th and 26th October. Lecture notes will be made by Tünde Kovács,
the first chapters after the lectures, later when it becomes more difficult before
the lectures. There are exercises, partly as homework. This homework has to
made every second week and forms part of the exam. The other part is an oral
where I ask the solutions of some exercises and to explain details which are not
written out to check whether you have really understood the mathematics. The
renumeration is 6 ECTS.

The contents of the course is not fixed yet, but I can give a good impression
of the contents.

Chapter 1. Residue classes.
Chapter 2. Sums of squares with the theorem that every positive integer can
be written as the sum of four squares.
Chapter 3. The weak prime number theorem.
Chapter 4. Multiplicative functions and Dirichlet series. E.g. Euler products.
Chapter 5. Primes in arithmetic progressions (AP) with the proof that every
AP (a+ nd)∞n=1 with gcd(a, d) = 1 has infinitely many primes.
Chapter 6. Sieve methods with an upper bound for the number of primes in an
AP.
Chapter 7. The circle method with the proof that a sequence without an AP of
length 3 has zero density.
Chapter 8. Smooth numbers
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Here are some elementary notions and results which we assume without fur-
ther mention.

The fundamental theorem of arithmetic: Every given natural number can be
written uniquely as the product of prime numbers (up to order).

To be more precise, any given natural number n can be represented in the form

n = pk1
1 p

k2
2 · · · pkr

r

where p1 < p2 < . . . < pr are primes and k1, k2, . . . , kr are positive integers. (In
the case n = 1 we have r = 0.) We shall refer to this representation as writing
n in standard form.

Congruences. Let m ∈ N, r ∈ Z such that 0 ≤ r < m. The residue class r
modulo m consists of all integers which divide by m have remainder r. Let a
be an element of the residue class r modulo m, then we use the notation a for
a+mZ which contains all integers a (mod m). Hence a = b ⇐⇒ m|(a− b). We
can define the sum and the product of residue classes:

a+ b = a+ b, (1)

a · b = ab. (2)

Let m ∈ N, a, b ∈ Z such that (a,m) = 1. Then the equation ax = b has a
unique solution modulo m. Let m ∈ N, a, b ∈ Z such that (a,m) = d. Then the
equation ax = b has no solution when d 6 |ib and there are exactly d solutions
when d|b.

If we have to deal with a system of linear congruences in a single unknown,
each taken to a different modulus, we can use the Chinese Remainder Theorem.

Chinese Remainder Theorem: If m1, . . . ,mr ∈ N are given moduli relatively
prime in pairs, then the system of linear congruences x ≡ c1 (mod m1), x ≡ c2
(mod m2),. . ., x ≡ cr (mod mr) where c1, . . . , cr ∈ Z are given remainders, has
a unique solution modulo m1 · · ·mr.

Let a ∈ Z, m ∈ N, m > 1 and (a,m) = 1. Then the residue class a
modulo m is called a prime residue class. Note that the product of two prime
residue classes mod m is again a prime residue class mod m. We call the
uniquely determined residue class c (mod m) for which ac ≡ 1 (mod m) holds,
the inverse residue class of the prime residue class a (mod m) and we use the
notation a−1 (mod m). We have ϕ(m) distinct prime residue classes mod m
where ϕ is Euler‘s ϕ-function. Furthermore, we have:

if (m,n) = 1 then ϕ(m,n) = ϕ(m) · ϕ(n), (3)

ϕ(n) = n ·
∏

p|n, p prime

(

1 − 1

p

)

, (4)

∑

d|n
ϕ(d) = n. (5)
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Euler’s Theorem: Let a ∈ Z, m ∈ N such that (a,m) = 1. Then aϕ(m) ≡ 1
(mod m).
If m is a prime, denoted by p, then Fermat’s Theorem says: Let a ∈ Z, p be a
prime such that p 6 |a. Then ap−1 ≡ 1 (mod p).



Chapter 1

Residue classes

Literature:
F. Beukers, Getaltheorie voor Beginners, Epsilon Uitgaven, Utrecht, 1998.
K. Chandrasekharan, Introduction to Analytic Number Theory, Springer-Verlag,
1968.
G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Ox-
ford at the Clarendom Press, 5th edition, 1979.
L.K. Hua, Introduction to Number Theory, Springer-Verlag, 1982.

Theorem 1.1. (Lagrange, 1768) Let p be a prime, an ∈ Z, p 6 |an. Then the
congruence

anx
n + . . .+ a0 ≡ 0 (mod p)

has at most n solutions {mod p.

Proof. We use induction on n. For n = 1 we have a1x + a0 ≡ 0 (mod p). The
fact that p 6 |a1 and a1x =p −a0 implies that x =p −a−1

1 a0. So the solution is
exactly one residue class. Assume that the theorem holds up to a certain degree
n − 1. Let x1 be a solution. Then anx

n
1 + . . . + a0 =p 0. From this we get

an (xn − xn
1 ) + an−1

(
xn−1 − xn−1

1

)
+ . . .+ a1(x− x1) =p 0. This implies

(x− x1)
{
an

(
xn−1 + xn−2x1 + . . .+ xn−1

1

)
+ . . .+ a1

}
=p 0.

We get a polynomial with degree n− 1 and leading coefficient an, so we can use
the induction assumption for this: it can have at most n−1 solutions incongruent
mod p. Recall that p|ab =⇒ p|a or p|b. Thus, the solution of our congruence is a
solution of x − x1 =p 0 or

{
an

(
xn−1 + xn−2x1 + . . .+ xn−1

1

)
+ . . .+ a1

}
=p 0.

The first congruence has only one solution, the second one has at most n − 1
solutions, thus we have at most n solutions. �

Theorem 1.2. Let p be a prime, d|(p− 1), d ∈ N. Then xd =p 1 has exactly d
incongruent solutions mod p.

Proof. From Fermat‘s Theorem the congruence xp−1 =p 1 has p − 1 prime
residue classes as solutions mod p.
Let p− 1 = k · d. Then we have

0 =p xp−1 − 1 =
(
xd − 1

) (

x(k−1)d + x(k−2)d + . . .+ 1
)

.

5
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From Theorem 1.1. we know that the first factor on the right-hand side has
at most d incongruent solutions and the second factor has at most (k − 1)d
solutions. Since there are p−1 solutions, the first factor has exactly d solutions.
�

We call g a primitive root of the positive integer m if g and m are coprime
and g, g2, . . . , gϕ(m) are all distinct. It means that g generates all the primi-
tive residue classes of m. If p is a prime and g is a primitive root of p, then
{0, g, g2, . . . , gp−1} represents the full set of residue classes of p.

Theorem 1.3. Let p be a prime, d ∈ N, d|(p− 1). Then there are exactly ϕ(d)
distinct residue classes of p of order d, and there are exactly ϕ(p− 1) primitive
roots of p.

Proof. We use induction on d. Let d = 1. The congruence x1 =p 1 has one
solution, namely 1. Let us assume that the theorem is correct for all d′|(p− 1)
with 1 ≤ d′ < d. By Theorem 1.2. we know that xd =p 1 has d solutions.
The order of the residue classes having order less than d, is a divisor d′ of d.
According to the induction hypothesis the number of these residue classes is
∑

d′|d,d′<d ϕ(d′). Then we get d−∑d′|d,d′<d ϕ(d′) solutions of order d. By (5)

this value equals ϕ(d). The second assertion follows from the first with d = p−1.
�

Definition. Let p be a prime number with p 6 |a. Then a is said to be a
quadratic residue modulo p if there exists some integer x such that x2 ≡ a

(mod p). We call a quadratic non-residue modulo p if the congruence x2 ≡ b
(mod p) has no solutions.

Theorem 1.4. Let p be an odd prime. Then there exist exactly p−1
2 quadratic

residues and p−1
2 quadratic non-residues modulo p.

Proof. Consider the residue classes 12, 22,. . .,
(

p−1
2

)2
mod p. As a2 ≡ (−a)2

mod p, there cannot be any other quadratic residues. Thus there exist at
most p−1

2 quadratic residue classes. Let g be a primitive root of p. Then g,

g2, g3,. . .,gp−1 are all distinct mod p, and g2 = (g)2, g4 =
(
g2
)2

,. . .,gp−1 =
(
g(p−1)/2

)2
are all quadratic residue classes. Thus there exist at least p−1

2

quadratic residue classes. So we have exactly p−1
2 quadratic residues and

p− 1 − p−1
2 = p−1

2 quadratic non-residues. �

Theorem 1.5. Let p be a prime, p > 2 and p 6 |a. Then

a is a quadratic residue mod p ⇐⇒ a
p−1
2 ≡ 1 (mod p)

a is a quadratic non-residue mod p ⇐⇒ a
p−1
2 ≡ −1 (mod p).

Proof. By Euler’s Theorem
(

a
p−1
2

)2

≡ ap−1 ≡ 1 (mod p). Thus a
p−1
2 is

a solution of the congruence x2 ≡ 1 (mod p) and then a
p−1
2 ≡ ±1 (mod p).

Assume that a is a quadratic residue. Then a ≡ b2 (mod p), which implies



7

that a
p−1
2 ≡ bp−1 ≡ 1 (mod p). By Theorem 1.2 it follows that the congruence

x
p−1
2 ≡ 1 (mod p) has exactly p−1

2 solutions. These solutions are exactly the

quadratic residues. Then for a quadratic non-residue a, we have a
p−1
2 ≡ −1

(mod p). �

Definition. Let p be a prime, p > 2. The Legendre symbol can be defined as
follows:

(
a

p

)

=







1 if a is a quadratic residue mod p,

−1 if a is a quadratic non− residue mod p,

0 if p|a.

Corollary. (Euler) For a prime p, p > 2 we have
(

a
p

)

=p a
p−1
2 .

Theorem 1.6. For an odd prime p and a, b, k ∈ Z the following holds:
(

a
p

)

·
(

b
p

)

=
(

ab
p

)

,
(

a+kp
p

)

=
(

a
p

)

.

Proof. Exercise!

Theorem 1.7. Let p be an odd prime. Then we have

(
1
p

)

= 1,
(

−1
p

)

=

{

1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).
.

Proof. The first assertion is trivial. The second assertion follows from

(−1

p

)

=p (−1)
p−1
2 =

{

1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

Theorem 1.8. Let p be an odd prime. Then we have

(
2
p

)

=

{

1 if p ≡ ±1 (mod 8),

−1 if p ≡ ±3 (mod 8).
.

Proof. See Hardy and Wright, Sect. 6.11.

Theorem 1.9. (The quadratic reciprocity law.) Let p and q be distinct odd
primes. Then (

p

q

)

·
(
q

p

)

= (−1)
p−1
2 · q−1

2 .

Proof. See Hardy and Wright, Sect. 6.13.
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The above theorems enable you to compute Legendre symbols quite fast and
hence to determine whether the congruence equation x2 ≡ a(modp) is solvable.
E.g.

(
87

127

)

=

(
3

127

)(
29

127

)

= −
(

127

3

)(
127

29

)

=

−
(

1

3

)(
11

29

)

= −
(

29

11

)

= −
(

7

11

)

=

(
11

7

)

=

(
4

7

)

= 1.

1.1 Homework for Chapter 1

1. a) Prove (p− 1)! ≡ −1 (mod p) if and only if p is a prime.
b) Compute (p− 1)! (mod p) if p is not prime.

2. Prove
a) If g is a primitive root of the prime p, then the other primitive roots
are given by gr with 1 ≤ r < p, gcd(r, p− 1) = 1.
b) If m has primitive roots, then m has exactly ϕ(ϕ(m)) primitive roots.
c)If m has a primitive root, then m = 1, 2, 4 or it is of the form pk or 2pk

with p an odd prime.
d) All numbers mentioned under c) have primitive roots.

3. Let p be on odd prime. Prove x4 ≡ −1 (mod p) is solvable ⇐⇒ p ≡ 1
(mod 8).

4. Prove that there are infinitely many primes p with p ≡ 3 (mod 4).

These exercises have to be done for Thursday 27 September.

1.2 Further exercises for Chapter 1

1. Let n ≥ 2 such that 2n + 1 is prime. Prove that n = 2k for some positive
integer k.

2. Prove: for all positive integer n with a 6= 1 we have n|ϕ(an − 1).

3. Determine all the quadratic residue classes of 17 and of 19.

4. For which primes is 5 a quadratic residue?

5. a) Let p be an odd prime and k an integer ≥ 2. Prove that
x2 ≡ d (mod p) is solvable if and only if x2 ≡ d (mod pk) is solvable.
b) Show that the assertion is wrong for p = 2.

6. Prove: p ≡ 3 (mod 4) ⇐⇒ N−K
p is odd. (K is the sum of quadratic

residues, N is the sum of quadratic non-residues.)

7. Compute
(

66
127

)
.



Chapter 2

Sums of squares

In this chapter we answer the question which integers can be written as the sum
of two, three, four squares. There is a whole theory on in how many ways a
number can be represented as the sum of a given number of squares. Here only
some elementary proofs are given which are a few hundred years old and proved
by the principle of infinite descent.

Note that 2 = 12 + 12 and no prime p ≡ 3 (mod 4) can be written as sum of
two squares, since every square is ≡ 0, 1 (mod 4).

Theorem 2.1. (Euler) Every prime p ≡ 1 (mod 4) can be written as the sum
of two squares and in only one way. (Here we consider (±a)2 + (±b)2 and
(±b)2 + (±a)2 as the same representation.)

Proof. Consider the congruence x2 ≡ −1 (mod p). By Theorem 1.7 we know
that this is solvable if p ≡ 1 (mod 4). Choose a solution x0 with −p

2 < x0 ≤ p
2 .

Thus x2
0 + 1 = lp with l <

(
p2

4 + 1
)

· 1
p <

1
2p < p.

Let m be the smallest natural number such that mp can be written as the
sum of two squares, mp = x2

1 + y2
1 . If m = 1 then we are ready. Assume

that m > 1. We have 1 < m ≤ l < p. Choose x2 and y2 from the interval
(
−m

2 ,
m
2

]
such that x2 ≡ x1 (mod m), y2 ≡ y1 (mod m). Then it follows

that x2
2 + y2

2 ≡ x2
1 + y2

1 ≡ mp ≡ 0 (mod m). Thus if x2
2 + y2

2 = rm, then

r ≤
(

m2

4 + m2

4

)

· 1
m = m

2 < m. Assume r = 0, then x2 = y2 = 0, thus m|x1,

m|y1 and m2|x2
1 + y2

1 = mp from this it follows that m|p in contradiction with
1 < m < p. Thus 1 ≤ r < m. We know that x1y2 − x2y1 ≡ x1y1 − x1y1 ≡ 0
(mod m) and x1x2 +y1y2 ≡ x2

1 +y2
1 ≡ 0 (mod m). Define x3 = (x1x2+y1y2)/m,

y3 = (x1y2 − x2y1)/m. Then it follows that x3, y3 ∈ Z and

x2
3 + y2

3 =
(x1x2 + y1y2)

2 + (x1y2 − x2y1)
2

m2
=

(x2
1 + y2

1)(x
2
2 + y2

2)

m2
= rp.

Since 1 ≤ r < m, it is a contradiction with the definition ofm. Via infinite descent
we showed that p is representable as the sum of two squares.

Assume that p can be written as the sum of two squares in two distinct
ways: x2 + y2 and X2 + Y 2. We know that (x, y) = 1 and (X,Y ) = 1. Choose
y4 and Y4 such that yy4 ≡ 1 (mod p) and Y Y4 ≡ 1 (mod p). Then it follows

9
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that (xy4)
2 + 1 ≡ x2y2

4 + y2y2
4 = (x2 + y2)y2

4 ≡ 0 (mod p) and analogously
(XY4)

2 + 1 ≡ 0 (mod p). Thus xy4 and XY4 are solutions of the congruence
z2 + 1 ≡ 0 (mod p). By Theorem 1.1 we know that it has two solutions, ±z0
say. Thus xy4 ≡ ±XY4 (mod p). This gives that xY ≡ ±Xy (mod p). We
get that p2 = (x2 + y2)(X2 + Y 2) = (xX ± yY )2 + (xY ∓Xy)2 ≡ (xX ± yY )2

(mod p). Thus p|xX ± yY . Let x5 = xX±yY
p , y5 = xY ∓yX

p . Then x5, y5 ∈ Z

and x2
5 + y2

5 = p2

p2 = 1. Therefore we get x5 = 0 or y5 = 0. Thus xX = ∓yY or

xY = ±yX and as (x, y) = 1 and (X,Y ) = 1, it follows that |x| = |Y |, |y| = |X |
or |x| = |X |, |y| = |Y |. Therefore there cannot exist two distinct representations
of p as sum of two squares. �

Theorem 2.2. A natural number n is representable as the sum of two squares
if and only if each prime factor of n of the form 4k+3 occurs to an even power
in the prime factorization of n.

(For example n = 23 ·32 ·11 ·132 is not representable as the sum of two squares,
but n = 23 · 32 · 112 · 13 is.)

Proof. If m and n are representable as the sum of two squares, then their
product mn is representable, too. Let m = a2 + b2, n = c2 + d2, then mn =
(ac+ bd)2 + (ad− bc)2.
⇐= Let us assume that n is of the form 2kpk1

1 · · · pkr
r q

2l1
1 · · · q2ls

s with pj ≡ 1
(mod 4) and qj ≡ 3 (mod 4) are all primes. The factors 2, p1, . . . , pr, q

2
1 , . . . , q

2
s

can be written as the sum of two squares. By the statement at the beginning
of the proof, we are ready with this direction.
=⇒ Assume that n = a2 + b2. Let (a, b) = d, a1 = a/d, b1 = b/d, n1 = n/d2.
Then we have n1 = a2

1 + b21 with (a1, b1) = 1. Assume that q is a prime number
≡ 3 (mod 4) such that it appears to an odd power in the prime factorization
of n. Then we have q|n1, but q 6 |a1 and q 6 |b1. Since −b21 ≡ a2

1 (mod q), we

get 1 =
(

−b21
q

)

=
(

−1
q

)(
b21
q

)

=
(

−1
q

)

. From this it follows that q ≡ 1 (mod 4),

which is a contradiction. �

The problem of the solvability of the equation n = x2 + y2 + z2 is much
more difficult than the corresponding question for the sum of either two or four
squares. We have the following result.

Theorem 2.3. A natural number n can be written as the sum of three squares
if and only if n is not of the form 4l(8k + 7).

Proof. =⇒ Assume n = 4l(8k+7). We use induction on l. For l = 0 we observe
that 8k+ 7 is not representable as the sum of three squares because a square is
≡ 0, 1 or 4 (mod 8). Assume that the theorem is correct for 0, 1, . . . , l − 1 and
n = 4l(8k + 7) = a2 + b2 + c2. If a, b, c are all even then n

4 = 4l−1(8k + 7) =
(

a
2

)2
+
(

b
2

)2
+
(

c
2

)2
, which is a contradiction. Otherwise exactly one of the

numbers a, b, c is even and the other two are odd. From this it follows that
a2 + b2 + c2 ≡ 0 + 1 + 1 (mod 4). However 4|n, which leads to a contradiction.
⇐= See e.g. Landau, Vorlesungen I, Satz 187, pp. 114-125. �
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Theorem 2.4. (Girard, Fermat, Lagrange) Every natural number is repre-
sentable as the sum of four squares.

Proof. Since 1 = 12 +02 + 02 + 02 and 2 = 12 + 12 +02 + 02, we assume n ≥ 3.
If m and n are representable as the sum of four squares, then their product

mn is representable, too. Let m = x2
1 +x2

2 +x2
3 +x2

4, n = y2
1 +y2

2 +y2
3 +y2

4 , then
mn = (x1y1 + x2y2 + x3y3 + x4y4)

2 + (x1y2 − x2y1 + x3y4 − x4y3)
2 + (x1y3 −

x3y1 +x4y2−x2y4)
2 +(x1y4−x4y1 +x2y3−x3y2)

2. Thus we only need to prove
the theorem for prime numbers.

Let p ≡ 1 (mod 4). By Theorem 2.1 we know that p is of the form a2 +
b2 + 02 + 02. For prime numbers p ≡ 3 (mod 4) we use the method of infinite
descent. Let z be the smallest positive quadratic non-residue of p. Then z ≥ 2

and z − 1 is a quadratic residue. Further,
(

−z
p

)

=
(

−1
p

)(
z
p

)

= −1 · −1 = 1,

thus −z is a quadratic residue of p. Let −z ≡ x2 (mod p) and z − 1 ≡ y2 (mod
p). Then it follows that x2 + y2 + 1 ≡ −z + (z − 1) + 1 ≡ 0 (mod p). Choose
x0, y0 such that x0 ≡ x (mod p) and y0 ≡ y (mod p) with |x0| < p

2 and |y0| < p
2 .

Then x2
0 + y2

0 + 1 = m0p with 1 ≤ m0p <
p2

4 + p2

4 + 1 < 3p2

4 < p2 and thus
1 ≤ m0 < p.

Let m be the smallest natural number such that mp can be written as the
sum of four squares. If m = 1 then we are ready. Assume that m > 1 and
mp = a2 + b2 + c2 + d2. Choose A,B,C,D from the interval

(
−m

2 ,
m
2

]
such

that a ≡ A (mod m), b ≡ B (mod m), c ≡ C (mod m), d ≡ D (mod m).
Then we have A2 + B2 + C2 + D2 ≡ a2 + b2 + c2 + d2 ≡ 0 (mod m). Thus
A2 +B2 + C2 +D2 = rm for some r ∈ Z with 0 ≤ r ≤ m. Assume r = 0, then
we get A = B = C = D = 0 and m2|a2 + b2 + c2 + d2 = mp, therefore, m|p in
contradiction with 1 < m ≤ m0 < p.

Assume r = m, then it follows that A = B = C = D = m/2 and a ≡ b ≡ c ≡
d ≡ m

2 (mod m), and therefore a2 +b2 +c2 +d2 ≡ m2

4 + m2

4 + m2

4 + m2

4 ≡ m2 ≡ 0
(mod m2). Thus, we getm2|mp, and then m|p, in contradiction with 1 < m < p.
We conclude that 1 ≤ r < m.

We can use the property mentioned in the beginning of the proof as follows
(a2 + b2 + c2 + d2)(A2 +B2 + C2 +D2) = α2 + β2 + γ2 + δ2 with

α := aA+ bB + cC + dD ≡ a2 + b2 + c2 + d2 ≡ 0 (mod m),

β := aB − bA+ cD − dC ≡ ab− ab+ cd− cd ≡ 0 (mod m),

γ := aC − cA+ dB − bD ≡ ac− ac+ bd− bd ≡ 0 (mod m),

δ := aD − dA+ bC − cB ≡ ad− ad+ bc− bc ≡ 0 (mod m).

Therefore, α/m, β/m, γ/m and δ/m are integers and

( α

m

)2

+

(
β

m

)2

+
( γ

m

)2

+

(
δ

m

)2

=
1

m2
(a2+b2+c2+d2)(A2+B2+C2+D2) = rp.

Thus rp can be written as the sum of four squares, and since 1 ≤ r < m, it is
in contradiction with the definition of m. �

Problem of Waring. We have shown that every positive integer can be written
as the sum four squares. Around 1770 the English mathematician Waring posed
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the following question nowadays known as Waring’s problem. Is there for every
positive integer k an integer g(k) such that every positive integer can be written
as the sum of g(k) kth powers of nonnegative integers?

Hilbert showed in 1909 that for every positive integer k there is such a
constant g(k). It is now known that, if g(k) denotes the smallest such number,
g(2) = 4, g(3) = 9, g(4) = 19, g(5) = 37 and, in general, g(k) =

[
(3/2)k

]
+2k−2

for k ≥ 3.

Pythagorean triples. According to the Pythagorean theorem to find all right
triangles with integral side lengths, we need to find all triples of positive integers
x, y, z satisfying the Diophantine equation x2 + y2 = z2. Triples of positive
integers satisfying this equation are called Pythagorean triples. A Pythagorean
triple x, y, z is called primitive if (x, y, z) = 1.

Theorem 2.5. All primitive solutions of a2 + b2 = c2 in natural numbers a, b, c
with b even are given by

a = r2 − s2, b = 2rs, c = r2 + s2

with r > s > 0, (r, s) = 1 and 2 6 |(r − s).

and, conversely, every such a pair (r, s) generates a primitive Pythagorean triple
a, b, c.

(The smallest values for the parameters (r, s) are (2, 1), (3, 2), (4, 1), (4, 3),
(5, 2), (5, 4) which are related to the equations 32 + 42 = 52, 52 + 122 = 132,
152 + 82 = 172, 72 + 242 = 252, 212 + 202 = 292, 92 + 402 = 412.)

Proof. Since a is odd, b is even, c must be odd and 2|c ± a. We have b2 =
c2 − a2 = (c − a)(c + a). Let d = (c − a, c + a). Then 2|d. Further, we have
d|(c + a) − (c − a) = 2a and d2|b2. Thus, d|(2a, b) and since (a, b) = 1, d|2. It

follows that d = 2 and
(

c−a
2 , c+a

2

)
= 1. We have c−a

2 · c+a
2 =

(
b
2

)2
and since the

factors on the left-hand side are coprime, there exist natural numbers r and s
such that r2 = c+a

2 , s2 = c−a
2 and (r, s) = 1. It follows that

a = r2 − s2, c = r2 + s2, b =
√
c2 − a2 = 2rs

and as c > a > 0 and a is odd,

r > s > 0, (r, s) = 1 and r2 − s2 = a ≡ 1 (mod 2).

Since r− s|r2 − s2, r− s must be odd. We know that a2 + b2 = c2, b is even and
if p|(a, b), then p has to be odd, p|r or p|s, p|r2 − s2, hence p|r and p|s which is
a contradiction. �

Remark. There exists a bijection between the primitive Pythagorean triplets
and the pairs (r, s).

Theorem 2.6. The Diophantine equation a4 + b4 = c2 has no solutions in
nonzero integers a, b, c.
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Proof. Assume that c0 is the smallest natural number which satisfies the equa-
tion for some nonnegative integers a0, b0, i. e. a4

0 + b40 = c20. Then (a0, b0) = 1

and
(
a2
0

)2
+
(
b20
)2

= c20. We may assume that b0 is even. By Theorem 2.5
there exist natural numbers r, s such that a2

0 = r2 − s2, b20 = 2rs, c20 = r2 + s2,
r > s > 0, (r, s) = 1 and 2 6 |r − s.
Assume r is even, then s is odd and a2

0 ≡ 0 − 1 ≡ 3 (mod 4) which is a contra-
diction. Thus r is odd and since 2 6 |r − s, then s is even.

From r > s > 0, (r, s) = 1 and r s
2 =

(
b0
2

)2
, we get that there exist natural

numbers u and v with r = u2, s
2 = v2. Since r is odd, u is also odd. From

a2
0 = r2 − s2 it follows that a2

0 +
(
2v2
)2

=
(
u2
)2

. We know that
(
a0, 2v

2
)

=
(a0, s)|(r2 − s2, s) = (r2, s) = 1. By Theorem 2.5 there exist natural numbers ρ
and τ such that a0 = ρ2−τ2, 2v2 = 2ρτ , u2 = ρ2 +τ2, ρ > τ > 0, (ρ, τ) = 1 and
2 6 |ρ− τ . Thus, v2 = ρτ and (ρ, τ) = 1. Let α and β natural numbers such that
ρ = α2, τ = β2, (α, β) = 1. We get that α4 + β4 = ρ2 + τ2 = u2. Thus α, β, u
are solutions of a4 + b4 = c2. Further, c0 = r2 + s2 = u4 + 4v4 > u4 ≥ u > 0
which implies that c0 cannot be minimal. �

2.1 Homework for Chapter 2

1. Construct a solution of x2 + y2 + z2 + u2 = 71 starting from 202 + 32 +
42 + 12 = 6 · 71 and following the proof of Theorem 2.4.

2. Show that for every k at least
[
(3/2)k

]
+ 2k − 2 k-th powers are needed

to represent every positive integer as sum of k-th powers.

3. Prove: the equation x4 + 4y4 = z2 has no nontrivial integer solutions.

4. Prove that there exist infinitely many primes p with p ≡ 1 (mod 4).

These exercises have to be done for Thursday 11 October.

2.2 Further exercises for Chapter 2

1. Which numbers can be written as the difference of two squares?

2. a) For which primes p is the congruence x2 ≡ −2 (mod p) solvable?
b) Which primes p can be written as 2x2 + y2?
c) Which integers n can be written as 2x2 + y2?

3. Prove: the area of a Pythagorean triangle is not the square of a rational
number.

4. Let r(n) be the number of solutions (a, b) ∈ Z2 of n = a2 + b2. (E.g.
r(10) = 8 in view of 10 = (±1)2 + (±3)2 = (±3)2 + (±1)2. Prove that

limN→∞
1
N

∑N
n=1 r(n) = π.

Hint: Represent a2 + b2 as a+ bi.
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Chapter 3

The weak Prime Number

Theorem

Literature:
Tom M. Apostel, Introduction to Analytic Number Theory, Springer-Verlag,
1976.
K. Chandrasekharan, Introduction to Analytic Number Theory, Springer-Verlag,
1968.
H. Davenport, Multiplicative Number Theory, Springer Verlag, 1980.
G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Ox-
ford at the Clarendom Press, 5th edition, 1979.
L.K. Hua, Introduction to Number Theory, Springer-Verlag, 1982.

Prime numbers play an important role in number theory. In this chapter the
central question is how many primes up to x there are. Euclid already proved
that there are infinitely many primes. His proof provides a weak lower bound.

Theorem 3.1. The sequence of prime numbers p1 = 2 < p2 = 3 < p3 < . . . <
pn < . . . is infinite and pn ≤ 22n−1

holds for n = 1, 2, 3, . . ..

Proof. p1 = 2 ≤ 220

, p2 = 3 ≤ 221

. Assume that the statement is correct for
1, 2, . . . , n− 1 with n ≥ 3. Then p1p2 · · · pn−1 − 1 is not divisible by any prime

number ≤ pn−1. Thus pn ≤ p1p2 · · · pn−1 ≤ 220+21+...+2n−2

= 22n−1−1 < 22n−1

.
�

Let π(x) =
∑

p≤x 1, i.e. the number of primes ≤ x. By Theorem 3.1 we

know that π(22n−1

) ≥ n, which implies π(x) ≥ log logx. This approximation
can be improved. Gauss (1771-1855) stated

π(x) ∼ li(x) :=
∫ x

2

dt

log t
∼ x

logx
when x → ∞.

Here ∼ denotes asymptotic equality, i.e. the quotient of the left-hand side
and the right-hand side converges to 1 if x → ∞. In fact li(x) is an excellent
approximation for π(x), better than x/ logx, and it is easy to prove with partial
integration that li(x) ∼ x/ logx. Around 1850 Riemann sketched a proof of
π(x) ∼ li(x) using some property of ζ(s). One of these properties, namely that

15
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all of the zeros of ζ(s) with 0 ≤ Re(s) ≤ 1 lie on the critical line Re(s) = 1
2 , has

not yet been proved and is called the Riemann Hypothesis. In 1896 Hadamard
and de le Vallée Poussin proved Gauss’ conjecture:

Theorem 3.2. (Prime Number Theorem) π(x) ∼ li(x) ∼ x

logx
, x → ∞.

In 1947 Erdős and Selberg found a proof of the prime number theorem using
only elementary methods. If the Riemann Hypothesis is true then the following
holds: for every ε > 0 there is an x0 such that |π(x)−li(x)| ≤ x

1
2+ε for x ≥ x0(ε).

Up to now, only the following inequality has been proved (by Korobov and I.M.
Vinogradov in 1958):

|π(x) − li(x)| ≤ x exp(−c(logx)
3
5 ) for x ≥ x0.

Here c and x0 are certain constants.

Around 1851, Chebyshev proved that 0.92 x
log x < π(x) < 1.11 x

log x . We give
an elementary proof of a slightly weaker theorem:

Theorem 3.3. For all x ≥ 3 the following holds:
1

2

x

log x
< π(x) < 4

x

logx
.

Lemma 3.1. For all natural numbers n, we have
∏

p≤n p < 4n.

Proof. For n = 1, 2 the theorem is right. Assume that the theorem is correct
for 1, 2, . . . , n− 1. If n is even, then

∏

p≤n p =
∏

p≤n−1 p ≤ 4n−1 < 4n, and we

are ready. Assume that n = 2m+ 1. We use
(
2m+1

m

)
=

(2m+ 1) · · · (m+ 2)

m!
is

divisible by all prime numbers p with m+ 1 < p ≤ (2m+ 1). Thus

∏

m+1<p≤2m+1

p ≤
(

2m+ 1

m

)

=
1

2

{(
2m+ 1

m

)

+

(
2m+ 1

m+ 1

)}

<
1

2

2m+1∑

r=0

(
2m+ 1

r

)

=
22m+1

2
= 22m.

Therefore, we get
∏

p≤n

p =
∏

p≤2m+1

p ≤ 22m
∏

p≤m+1

p < 22m4m+1 = 42m+1 = 4n.

�

Corollary. For all real numbers x ≥ 1, we have
∏

p≤x p < 4x.

Proof of π(x) < 4x/ logx.
We have ∏

p≤n

p >
∏

√
n<p≤n

p ≥ n
1
2 (π(n)−π(

√
n)).

By Lemma 3.1 we find that

n
1
2 (π(n)−π(

√
n)) < 4n

or, equivalently,

π(n) − π(
√
n) <

2n log 4

logn
<

3n

logn
.
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Since π(
√
n) ≤ √

n < n
log n for n ≥ 3, it follows that π(n) < 3n

log n +
√
n < 4n

log n .
Thus, for x ≥ 3 we have

π(x) = π([x]) <
4[x]

log [x]
≤ 4x

logx
.

�

Lemma 3.2. For all natural numbers n, we have 22n

2n ≤
(
2n
n

)
< 22n.

Proof. We know that
(
2n
n

)
< (1+1)2n = 22n. On one hand, the largest element

in a row of Pascal’s Triangle is the middle one, on the other hand

(
2n

n

)

=

(
2n− 1

n− 1

)

+

(
2n− 1

n

)

≥ 2
(1 + 1)2n−1

2n
=

22n

2n
.

�

Lemma 3.3. Assume pb|
(
2n
n

)
for a certain prime number p. Then pb ≤ 2n.

Proof. The number of prime factors p in m! equals

[
m

p

]

+

[
m

p2

]

+

[
m

p3

]

+ . . . ,

since among the numbers 1, 2, . . . ,m there are

[
m

p

]

which are divisible by p,

among the numbers 1, 2, . . . ,m there are

[
m

p2

]

which are divisible by p2, etc.

The number of prime factors p in
(
2n
n

)
= (2n)!

n!n! is therefore

b =

[
2n

p

]

+

[
2n

p2

]

+ . . .+

[
2n

pt

]

− 2

[
n

p

]

− 2

[
n

p2

]

− . . .− 2

[
n

pt

]

where pt ≤ 2n < pt+1. Thus b =
∑t

r=1

([
2n
pr

]

− 2
[

n
pr

])

.

One can see that [2x] − 2[x] equals 0 or 1 for every x ∈ R. Thus b ≤ t and
pb ≤ pt ≤ 2n. �

Proof of π(x) > x/(2 logx).
By Lemma 3.3 we know that

(
2n

n

)

=
∏

p≤2n

pbp ≤
∏

p≤2n

(2n) = (2n)π(2n).

By Lemma 5.2 we know that
(
2n
n

)
≥ 22n/2n. Thus (2n)π(2n) ≥ 22n/2n or

π(2n) ≥ 2n log 2

log (2n)
− 1 for all n.

Let n = [x] and assume that n ≥ 20. If n is even, say n = 2m, then we have

π(x) = π(n) = π(2m) ≥ 2m log 2

log (2m)
−1 = (log 2)

n

logn
−1 >

1

2

n+ 1

log (n+ 1)
>

1

2

x

logx
.
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If n is odd, then we have, by the previous inequality,

π(x) = π(n+ 1) >
1

2

n+ 2

log (n+ 2)
>

1

2

x

logx
.

For 3 ≤ x < 20 one can verify that the inequality is true by direct calculations.
�

Theorem 3.4. (Bertrand’s Postulate) For every natural number n there exists
at least one prime number p with n < p ≤ 2n.

Lemma 3.4. If n ≥ 3 and 2
3n < p ≤ n then p 6 |

(
2n
n

)
.

Proof. From the conditions we know that p > 2,
[

2n
p

]

= 2 and p2 > 2n. The

number of prime factors p in (2n)! is
[

2n
p

]

+ 0 + 0 + . . . = 2. The number of

prime factors p in n! is
[

n
p

]

+ 0 + 0 + . . . = 1. Thus
(
2n
n

)
= (2n)!

n!n! is not divisible

by p. �

Proof of Theorem 3.4.

In the sequence of prime numbers 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 557 each num-
ber is less then twice the previous one which yields that the theorem is correct
for n ≤ 500. Assume that the theorem is not true for a certain number n > 500.
By Lemma 3.4, each prime divisor of

(
2n
n

)
at most 2n/3. Suppose that pb||

(
2n
n

)
.

By Lemma 3.3, we know that pb ≤ 2n. Thus: if b ≥ 2, then p2 ≤ 2n, hence
p ≤

√
2n. Since there exist at most [

√
2n] such prime numbers, we have

(
2n

n

)

≤
∏

p≤
√

2n

pb
∏

√
2n<p≤ 2n

3

p ≤ (2n)[
√

2n]
∏

p≤ 2n
3

p.

From Lemma 3.2 it follows that
(
2n
n

)
≥ 22n

2n and from Lemma 3.1 we have
∏

p≤2n/3 p ≤ 42n/3. Combining these inequalities we obtain that

22n

2n
≤ (2n)

√
2n42n/3,

hence
22n/3 ≤ (2n)

√
2n+1

and taking logarithms on both sides, we get

2n

3
log 2 ≤ (

√
2n+ 1) log 2n.

However, this is impossible for n ≥ 500 (check this). Hence, the theorem is
correct for n > 500, too, and thus for every natural number. �

Theorem 3.4 was formulated by Bertrand in 1845 and it was completely
proved by Chebyshev in 1850.

We derive some consequences of Theorem 3.3.

Theorem 3.5. Let pr be the rth prime number (p1 = 2, p2 = 3, p3 = 5, . . .).
Then we have

1

4
r log r < pr < 4r log r for r ≥ 2.
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Proof. If r ≥ 2 then pr ≥ 3. By Theorem 3.3 we know that r = π(pr) < 4
pr

log pr
.

Hence, pr >
1
4r log pr ≥ 1

4r log r. This proves the first inequality.
It is easy to verify the inequality pr < 4r log r for r = 2, 3, . . . , 8. Assume that
r ≥ 9. Then r ≥ 4 log r. From the first inequality of Theorem 3.3 it follows that
π(r2) > r2/(4 log r) ≥ r. Thus pr < r2, and hence log pr < 2 log r. Using the
first inequality of Theorem 3.3 we obtain

r = π(pr) >
1

2

pr

log pr
>

pr

4 log r
.

�

Theorem 3.6. There exist constants c1 and c2 such that, for x ≥ 3,

1

4
log logx− c1 ≤

∑

p≤x

1

p
≤ 4 log logx+ c2.

Hence
∑

p

1

p
is divergent.

Proof. We use that
∫ x

2

dt

t log t
= [log log t]t=x

t=2 = log logx− log log 2. On the one

hand,

∑

p≤x

1

p
≤

x∑

r=1

1

pr
< 1 +

x∑

r=3

4

r log r
≤ 1 +

∫ x

2

4dt

t log t
= 4 log logx+ c2.

On the other hand, by Theorem 3.3 and Theorem 3.5, for x ≥ 20,

∑

p≤x

1

p
≥

x/(2 log x)
∑

r=1

1

pr
>

x/(2 log x)
∑

r=2

1

4r log r
>

1

4

∫ x/(2 log x)

2

dt

t log t
=

=
1

4
log log

x

2 logx
−1

4
log log 2

︸ ︷︷ ︸

>0

>
1

4
log logx1/3 =

1

4
log logx− 1

4
log 3.

We can choose a suitable constant such that the inequality is fulfilled also for
2 ≤ x < 20. �

By Theorem 3.2 (PNT) and with the help of other techniques it can be
proved that for each ε > 0 there exists an r0 such that

(1 − ε)r log r < pr < (1 + ε)r log r for r ≥ r0

and

lim
x→∞







∑

p≤x

1

p
− (log logx+ γ)






= 0

where γ is the constant of Euler.

Finally, we mention a few classical problems on prime numbers.



20 CHAPTER 3. THE WEAK PRIME NUMBER THEOREM

The distance of consecutive prime numbers. There is a conjecture which says

that for x > x0 each interval [x, x + 2(logx)2] contains a prime number. Even
under the Riemann Hypothesis the best proved result is only that each interval
[x, x + c(ε)x

1
2+ε] contains a prime number. Actually, the same statement is

proved unconditionally for each interval [x, x+ cx11/20].
It is also a conjecture that there are infinitely many twin primes, i.e. pairs of
primes p, p+ 2. It is known that there are infinitely many primes p such that
p+2 has at most two factors. It is not known whether there are infinitely many
primes p such that the next prime is less than p+ 1

10 log p.

Goldbach’s conjecture. The conjecture states that every even integer greater
than 2 can be written as the sum of two primes. In 1937 Vinogradov proved
that there exists a number n0 such that every odd number n > n0 can be
written as the sum of three primes. In 1966 Chen Ching-Jun showed that every
sufficiently large even number can be written as the sum of either two primes
or a prime and a product of two primes.

Prime numbers in arithmetic progressions. Let k, l ∈ N and (k, l) = 1. In 1842
Dirichlet proved that the sequence l, l + k, l + 2k, . . . contains infinitely many
primes. Let π(x, k, l) denote the number of primes p ≤ x with p ≡ l (mod k).
Then we have

π(x, k, l) ∼ 1

ϕ(k)

x

logx
, x→ ∞ (Prime number theorem for arithmetic progressions.)

Open problem: Are there infinitely many prime numbers in the sequence
{
n2 + 1

}∞
n=1

?

3.1 Homework for Chapter 3

1. Prove for N = 1, 2, . . .

a)
∏

p≤N

1

1 − p−1
≥∑N

n=1

1

n
> logN ,

b) 0 < log

(
1

1 − p−1

)

− 1

p
<

1

2p(p− 1)
,

c)
∑

p≤N

(

log

(
1

1 − p−1

)

− 1

p

)

<
1

2
,

d)
∑

p≤N

1

p
> log logN − 1

2
.

2. Check whether the following sums converge when x→ ∞ and if they don’t
compute the order of growth of the sums.

a)
∑

p≤x

1

p log p
, b)

∑

p≤x

log p

p
, c)

∑

p≤x

1√
p(log p)2

.

3. a) How many prime factors p divide
(
2n
n

)
if

i) 1
2n < p ≤ 2

3n, ii) 2
5n < p ≤ 1

2n.

b) Generalize property 3a).
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4. Let ε > 0. Prove that the Prime Number Theorem implies that there
exists an x0 such that for every x > x0 the interval [x, (1 + ε)x] contains
a prime number.

These exercises have to be done for Thursday 1 November.

3.2 Further exercises for Chapter 3

1. Prove that li(x) ∼ x

logx
as x → ∞.

2. What is the highest power of 10 which divides 1000! ?

3. Prove that there are infinitely many positive integers such that π(n)|n.

4. Check whether the following sum converges when x→ ∞ and if it doesn’t
compute the order of growth of the sum:
∑

p≤x

1

p log log p
.
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Chapter 4

Multiplicative functions and

Dirichlet series.

4.1 Multiplicative functions

An arithmetic function is a map f : N −→ C. An arithmetic function is called
multiplicative if f(1) 6= 0 and f(mn) = f(m)f(n) for every pair m, n with
(m,n) = 1. The function is called completely multiplicative if f(1) 6= 0 and
f(mn) = f(m)f(n) for every pair m, n.

Examples. The Euler totient function ϕ is multiplicative. The following func-
tions are completely multiplicative: e with e(1) = 1 and e(n) = 0 for n ≥ 2, E
with E(n) = 1 for all n and Na for a ∈ R with Na(n) = na for all n.

Theorem 4.1. (i) If f is multiplicative then f(1) = 1.
(ii) There exists exactly one multiplicative function with given values in the
prime powers (i.e. pk, p prime, k ∈ N).
(iii) There exists exactly one completely multiplicative function with given values
in the prime numbers.

Proof. (i) We know that f(1) = f(1)f(1). Since f(1) 6= 0, it follows that
f(1) = 1.
(ii) Let f be a multiplicative function with given values f(pk) for all primes p
and k ∈ N. Let n ∈ N. Let pk1

1 p
k2
2 · · · pkr

r be the prime factorization of n. Then
f(n) = f(pk1

1 ) · · · f(pkr
r ). Thus f(n) is uniquely determined.

(iii) Let f be a completely multiplicative function with given values f(p) for
all primes p. Let pk1

1 p
k2
2 · · · pkr

r be the prime factorization of n. Then f(n) =

(f(p1))
k1 (f(p2))

k2 · · · (f(pr))
kr . Thus f(n) is uniquely determined. �

Examples. Let a ∈ R. There exists exactly one multiplicative function f with
f(pk) = a for each prime power pk. This function is denoted by aω(n). Notice
that ω(n) =

∑

p|n 1. There exists exactly one completely multiplicative function

g with g(p) = a for each prime p. This function is denoted by aΩ(n). Notice

23
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that Ω(n) = k1 + k2 + . . .+ kr if pk1
1 p

k2
2 · · · pkr

r is the prime factorization of n.

Assume that f and g are arithmetic functions. The convolution f ∗ g of f
and g is defined as follows:

f ∗ g(n) =
∑

d|n f(d)g
(

n
d

)
=
∑

d1d2=n f(d1)g(d2) for all n.

Theorem 4.2.

(i) f ∗ g = g ∗ f for all f and g,
(ii) (f ∗ g) ∗ h = f ∗ (g ∗ h) for all f, g, h,
(iii) f ∗ e = f for all f .

Proof. Exercise!

Theorem 4.3. The convolution product of two multiplicative functions is again
multiplicative.

Proof. Assume that f and g are multiplicative functions and h := f ∗ g.
Let (m,n) = 1. By the fundamental theorem of arithmetic it follows that
each divisor d of mn corresponds with a pair (d1, d2) such that d1|m, d2|n and
d = d1d2. Notice that (d1, d2) = 1. Then

h(mn) =
∑

d|mn

f(d)g
(mn

d

)

=
∑

d1|m

∑

d2|n
f(d1d2)g

(
mn

d1d2

)

=

=
∑

d1|m

∑

d2|n
f(d1)f(d2)g

(
m

d1

)

g

(
n

d2

)

=




∑

d1|m
f(d1)g

(
m

d1

)







∑

d2|n
f(d2)g

(
n

d2

)


 =

= h(m)h(n).

�

Corollary. The following functions are multiplicative:
τ(n) =

∑

d|n 1 since τ = E ∗E,

σa(n) =
∑

d|n d
a since σa = Na ∗E.

Notice that τ = σ0. We write σ instead of σ1 for the sum of divisors.

By Theorem 4.1 (i) we have the following in the given notation:

τ(n) =
∏r

j=1(kj + 1) for all natural numbers n,

σ(n) =
∏r

j=1

p
kj+1
j − 1

pj − 1
for all natural numbers n.

Indeed τ(pk) = k + 1 and σ(pk) = 1 + p+ . . .+ pk =
pk+1 − 1

p− 1
.

In ancient times and the middle ages people assigned magic properties to
numbers with special divisibility properties. In particular, 6 and 28 are perfect
because they equal to the sum of their divisors which are less than the number
itself, 6 = 1 + 2 + 3, 28 = 1 + 2 + 4 + 7 + 14.
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A positive integer n is called perfect if σ(n) = 2n. Two numbers m and n are
called amicable if σ(m) = σ(n) = m + n. An example of amicable pairs is the
pair 220, 284.

Theorem 4.4. (i) (Euclides) If 2k − 1 is prime then 2k−1(2k − 1) is perfect.
(ii) (Euler) If n is even and perfect, then n = 2k−1(2k − 1) where 2k − 1 is
prime.

Proof. (i) We know that (2k−1, 2k − 1) = 1. Thus, since 2k − 1 is prime,

σ(2k−1(2k − 1)) = σ(2k−1) · σ(2k − 1) =
2k − 1

2 − 1
· 2k = 2(2k−1(2k − 1)).

(ii) Assume that n is even and perfect. Write n = 2k−1m with k ≥ 2, m is odd.
From σ(n) = 2n, it follows that

2km = 2n = σ(n) = σ(2k−1)σ(m) = (2k − 1)σ(m).

Since (2k, 2k − 1) = 1, it follows that 2k − 1|m and 2k|σ(m). Let σ(m) = 2kc.
Then 2km = (2k − 1)σ(m) implies that m = c(2k − 1). Now assume that c > 1.
Then 1, c,m are distinct divisors of m. It follows that σ(m) ≥ 1 + c + m >
c + m = c · 2k = σ(m), which is a contradiction. Thus c = 1. We get that
σ(m) = 2k and m = 2k − 1. Hence m is prime and n = 2k−1(2k − 1). �

Remarks. 1. It is not known if any odd perfect number exists, making the
existence of odd perfect numbers appear unlikely.
2. If 2k − 1 is prime then k is prime. (Exercise!)
The converse is not true, a counterexample is 211−1 = 23×89. A prime number
of the form 2k − 1 is called a Mersenne Prime. The largest known Mersenne
Prime is the 44th and was found in 2006, it is 232582657 − 1. From the Mersenne
Primes 22−1, 23−1, 25−1, 27−1, we get the perfect numbers 6, 28, 496, 8128.

Theorem 4.5. Let f be an arithmetic function with f(1) 6= 0. Then there exists
exactly one arithmetic function g such that f ∗ g = e. If f is multiplicative then
g is also multiplicative.

Proof. From f(1)g(1) = e(1) = 1 and f(1) 6= 0, it follows that g(1) = 1/f(1).
Assume that g(1), g(2), . . . , g(n− 1) are already given. Then

0 = e(n) = f ∗ g(n) =
∑

d|n
f(d)g

(n

d

)

=
∑

d|n,d>1

f(d)g
(n

d

)

+ f(1)g(n).

Since f(1) 6= 0 and all values except for g(n) are given, one can compute g(n).
With induction it follows that g is uniquely determined.
Assume that f is multiplicative. Let h be a multiplicative function which is
equal to g in the prime powers, i. e. h(pk) = g(pk). By Theorem 4.1 h is
uniquely determined and by Theorem 4.3 u := f ∗h is multiplicative. Then, for
each prime power pk,

u(pk) =
∑

d|pk

f(d)h

(
pk

d

)

=

k∑

j=0

f(pj)h(pk−j) =

=

k∑

j=0

f(pj)g(pk−j) =
∑

d|pk

f(d)g

(
pk

d

)

= f ∗ g(pk) = e(pk).
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Since u and e are equal in the prime powers and both of them are multiplicative,
by Theorem 4.1 they must be the same. Thus g = h is multiplicative. �

Remark. By Theorem 4.2 e is the neutral element of the convolution product.
Therefore g is the inverse function of f , we denote it by f−1. This yields that
the multiplicative functions form an abelian group with the convolution product
as operator.

Example. Let µ = E−1. The function µ is called Möbius function. Theorem
4.5 implies that µ is multiplicative. By Theorem 4.1 it suffices to determine µ in
the prime powers. We know that µ(1) = 1, 0 = e(p) = µ(1)E(p) + µ(p)E(1) =
µ(1) + µ(p) = 1 + µ(p), thus µ(p) = −1 for all prime numbers p. Further, for
k = 2, 3, . . .,

0 = e(pk) = µ(1)E(pk) + µ(p)E(pk−1) = . . .+ µ(pk)E(1) =

= 1 · 1 + (−1) · 1 + µ(p2) + µ(p3) + . . .+ µ(pk).

We can see that µ(pk) = 0 for all k = 2, 3, . . . and prime numbers p.
Hence, by Theorem 4.1, we obtain that

µ(n) =







1 if n = 1,

(−1)r if n is a product of r distinct prime numbers,

0 if n is divisible by a square.

A number n with µ(n) 6= 0 is called a squarefree number. The Möbius function
plays an important role in combinatorics, for example in the inclusion-exclusion
rule.

Theorem 4.6. (Möbius inversion formula) Let f be an arithmetic function and
F (n) =

∑

d|n f(d) for all n. Then we have

f(n) =
∑

d|n
µ(d)F

(n

d

)

.

Proof. We know that F = f ∗E. Hence, f = e ∗ f = µ ∗E ∗ f = µ ∗ F . �

The previous theorems can be used to obtain relations between multiplicative
functions.

1. We give another proof for
∑

d|n ϕ(d) = n.
Let p be a prime, k ≥ 1. Then

µ ∗N1(p
k) = µ(1)pk + µ(p)pk−1 = pk − pk−1 = pk

(

1 − 1

p

)

= ϕ(pk).

Since µ,N1 and ϕ are multiplicative, it follows that µ ∗ N1 = ϕ. Thus
N1 = ϕ ∗E, and n =

∑

d|n ϕ(d) for all n.

2. We have τ ∗ ϕ = E ∗E ∗ µ ∗N1 = E ∗N1 = σ. Thus
∑

d|n τ(d)ϕ
(

n
d

)
= σ(n) for all n.
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4.2 Dirichlet series

Multiplicative functions are in correspondence with Dirichlet series. Let f be
an arithmetic function and s ∈ R (or ∈ C). The series F (s) =

∑∞
n=1 f(n)n−s is

the Dirichlet series corresponding to f .

Theorem 4.7. If for certain constants b and c, |f(n)| < bnc holds for all n ∈ N

then the Dirichlet series converges absolutely for <(s) > c+ 1.

Proof. Assume that <(s) > c+ 1. Let N ∈ N. Then we have

|
∞∑

n=N

f(n)

ns
| ≤

∞∑

n=N

|f(n)|
n<(s)

≤ b

∞∑

n=N

nc−<(s).

Since
∑∞

n=1 n
c−<(s) is convergent for <(s) > c + 1, by the Theorem of Weier-

strass, the Dirichlet series is absolutely convergent. �

Example. 1. ζ(s) =
∑∞

n=1

1

ns
is convergent for <(s) > 1.

2. Φ(s) =
∑∞

n=1

ϕ(n)

ns
is convergent for <(s) > 2 because ϕ(n) ≤ n.

The following theorem says that the convolution product of arithmetic functions
corresponds to the ordinary product of Dirichlet series.

Theorem 4.8. If F (s) =
∑∞

n=1 f(n)n−s and G(s) =
∑∞

n=1 g(n)n−s are abso-
lutely convergent, then

F (s)G(s) =

∞∑

n=1

(f ∗ g(n))n−s.

Proof. F (s)G(s) =
∑∞

d1=1 f(d1)d
−s
1

∑∞
d2=1 g(d2)d

−s
2 =

∑∞
k=1

(
∑

d1d2=k

f(d1)g(d2)

)

︸ ︷︷ ︸

f∗g(k)

k−s.

The summation is correct since both series are absolutely convergent. �

The next theorem shows the significance of (completely) multiplicative func-
tions.

Theorem 4.9. (i) If f is multiplicative and
∑∞

n=1 f(n)n−s is absolutely con-
vergent then we have

∑∞
n=1 f(n)n−s =

∏

p

{
1 + f(p)p−s + f(p2)p−2s + . . .

}
. (Euler product)

(ii) If f is completely multiplicative and
∑∞

n=1 f(n)n−s is absolutely convergent
then we have

∑∞
n=1 f(n)n−s =

∏

p {1 − f(p)p−s}−1
. (Euler product)

Proof. (i) By the fundamental theorem of arithmetic we get that each term
f(n)n−s = f(pk1

1 )p−k1s
1 · · · f(pkr

r )p−krs
r is counted exactly once on both sides.
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Because of the absolute convergence both sides are equal.
(ii) We have

∑∞
j=0 f(pj)p−js =

∑∞
j=0(f(p))j(p−s)j = (1 − f(p)p−s)−1. �

Example. 1. ζ(s) =
∑∞

n=1

1

ns
=
∏

p(1 − p−s)−1 for <(s) > 1.

2. M(s) =
∑∞

n=1

µ(n)

ns
=

1

ζ(s)
=
∏

p(1 − p−s) for <(s) > 1.

3. Φ(s)ζ(s) =
∑∞

n=1

ϕ ∗E(n)

ns
=
∑∞

n=1

n

ns
= ζ(s− 1), thus Φ(s) =

ζ(s− 1)

ζ(s)
for

<(s) > 2.

There exists a number σa ∈ [−∞,∞], called the abscissa of absolute con-
vergence, such that the series

∑∞
n=1 f(n)n−s converges absolutely if <(s) > σa

and does not converge absolutely if <(s) < σa.
It is possible that a Dirichlet series is conditionally convergent in a point s

with <(s) < σa. However, for any such s we have <(s) ≥ σa − 1. A Dirichlet
series converges in a half plane <(s) > σc. Thus σc ≥ σa − 1. If a Dirichlet
series has abscissa of convergence σc then it is uniformly convergent on any
compact set contained in the half plane <(s) > σc (and not convergent for
<(s) < σc). In the halfplane <(s) > σc it represents an analytic function whose
successive derivatives are obtained by termswise differentation of the series. If
F (s) =

∑∞
n=1 f(n)n−s with f(n) ≥ 0 for all n ≥ 1, and σc is finite, then the

point of intersection of the real axis with the line of convergence is a singularity
of F (s).

4.3 Homework for Chapter 4

1. Prove without taking care of convergence:

a) (ζ(s))2 =
∑∞

n=1

τ(n)

ns
, b)

1

ζ(s)
=
∑∞

n=1

µ(n)

ns
,

c)
ζ(2s)

ζ(s)
=
∑∞

n=1

(−1)Ω(n)

ns
=
∏

p

1

1 + p−s
.

2. Prove that
∏

p =
p2 + 1

p2 − 1
=

5

2
. (Hint: ζ(2) =

π2

6
, ζ(4) =

π4

90
.)

These exercises (and two from Chapter 5) have to be done by Thursday 15
November.

4.4 Further exercises for Chapter 4

1. Prove that if 2k − 1 is prime, then k is prime.

2. Compute a)
∏

p =
(

1 + 1
p2

)

, b)
∑∞

n=1

µ(n)

n2
.

3. Compute (2ω ∗ µ)(n) for every positive integer n.

4. Determine the function f for which ζ(s)ζ(2s) =
∑∞

n=1

f(n)

ns
(s > 1).



Chapter 5

Primes in arithmetic

progressions.

5.1 Dirichlet characters

Literature:
H.L. Montgomery and R.C. Vaughan, Multiplicative Number Theory I, Classi-
cal Theory, Cambridge University Press, 2007. (New)
K. Chandrasekharan, Introduction to Analytic Number Theory, Springer-Verlag,
1968.
H. Davenport, Multiplicative Number Theory, Springer Verlag, 1980.

A Dirichlet character is a completely multiplicative function χ which is peri-
odic mod k for some given k and for which χ(n) = 0 if (n, k) > 1. If k is a prime
p, then it has a primitive root g, that is g, g2, . . . , gp−1 = 1 are just representing
the residue classes not ≡ 0 (mod p). Then χ is completely determined by χ(g).
Furthermore, (χ(g))p−1 = χ(gp−1) = χ(1) = 1. Hence χ(g) is a (p − 1)th root
of unity. For each choice of χ(g) we find another character. The number of
Dirichlet characters mod p is therefore p− 1.

If χ assumes only real values, we call it a real character. If χ(g) = 1, then we
have the principal character χ0 defined by

χ0(n) =

{

1 if p 6 |n,
0 otherwise.

If χ(g) 6= 1, then χ(g) = −1. The Dirichlet character in this case is the Legendre
symbol.

Next we consider characters to prime power moduli. If q is an odd power
or q = 4, then there exists a primitive root g of q and we can proceed as
above, the only difference being that the modulus to which it is defined is now
ϕ(q) = pα−1(p− 1) when q = pα. We define the characters to the modulus q by

29
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taking any ϕ(q)th root of unity χ(g) and putting

χ(n) =

{

(χ(g))m for (n, p) = 1, n ≡ gm (mod q),

0 otherwise.

The number of characters is ϕ(q) = ϕ(pα). If q = 2α with α ≥ 3, then there is
no primitive root g, but every primitive residue class is representable uniquely
as (−1)ν5ν′

where ν is defined to the modulus 2 and ν ′ to the modulus 2α−2.
We define the characters in this case by

χ(n) = ων(ω′)ν′

where ω2 = 1 and (ω′)2
α−2

= 1. The number of characters is 2α−1 = ϕ(2α).

We shall now define the Dirichlet characters to the general modulus k. Let

k = 2αpα1
1 pα2

2 · · · (5.1)

be the standard factorization of k into prime powers. We define the characters
to the modulus k as products of arbitrary characters to the various prime power
moduli. The total number of characters is

ϕ(2α)ϕ(pα1
1 )ϕ(pα2

2 ) · · · = ϕ(k),

since ϕ is multiplicative. One of the characters is the principal character χ0(n)
defined by

χ0(n) =

{

1 if (n, k) = 1,

0 otherwise.

The characters have an important property that can be expressed in two forms.
In the first form it states that

k−1∑

n=0

χ(n) =

{

ϕ(k) if χ = χ0,

0 otherwise.
(5.2)

The truth of (5.2) is an immediate deduction from the representation of the
general character. For, if k is given by (5.1),

χ(n) = e
2πi

»

m0ν0
2 +

m′

0ν′

0
2α−2 +

m1ν1

ϕ(p
α1
1

)
+

m2ν2

ϕ(p
α2
2

)
+...

–

(5.3)

for (n, k) = 1, where m0, m
′
0, m1, m2, . . . are integers which take all the values

modulo the corresponding denominators, each an equal number of times. (If
α ≤ 2, the second term is to be omitted; if α = 1, then ν0 assumes only the value
0.) Hence summation over n is equivalent to a summation over ν0, ν

′
0, ν1, ν2, . . .,

each to its respective modulus, and this gives 0 unless each ofm0,m
′
0,m1,m2, . . .

is congruent to 0 with respect to its corresponding modulus in view of

m−1∑

l=0

e2πi l
m =

{

m if l ≡ 0 (mod m),

0 otherwise.
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In the ’unless’ case χ = χ0, the value of the sum is ϕ(k).

The second form of the property is that

∑

χ

χ(n) =

{

ϕ(k) if n ≡ 1 (mod k),

0 otherwise,
(5.4)

where the summation is over all the ϕ(k) characters. The same proof applies,
but with m’s and ν’s interchanged. The only case in which the sum does not
vanish is that in which all the ν’s are 0, and then n ≡ 1 (mod k). We use (5.4)
to select those integers which are in a given residue class. If (a, k) = 1, then

1

ϕ(k)

∑

χ

χ(a)χ(n) =

{

1 if n ≡ a (mod k),

0 otherwise,
(5.5)

for we have χ(a)χ(n) = χ(n′) where n′ ≡ 1 (mod k) if and only if n ≡ a (mod
k).

5.2 L-functions and the proof of Dirichlet’s the-

orem

The aim of this section is to prove Dirichlet’s theorem on arithmetic progres-
sions:

Theorem 5.1.(Dirichlet, 1842) Every arithmetic progression {kn+ l}∞n=1 with
(k, l) = 1 contains infinitely many primes.

For the proof we need a special kind of Dirichlet series.

An L-function L(s, χ) is a Dirichlet series

L(s, χ) =

∞∑

n=1

χ(n)

ns

where χ is a Dirichlet character. Since |χ(n)| ≤ 1 for all n, but |χ(n)| = 1 in an
arithmetic progression, we have σa = 1. Since χ is completely multiplicative,
we have an Euler product

L(s, χ) =
∏

p

(

1 − χ(p)

ps

)−1

.

It follows that

logL(s, χ) =
∑

p

∑∞
m=1

1
m

(χ(p))m

pms
for σ > 1.
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On using (5.5) we obtain, for (k, l) = 1,

1

ϕ(k)

∑

χ

χ(l) logL(s, χ) = (5.6)

=
∑

p

∑∞
m=1

1

mpms

1

ϕ(k)

∑

χ χ(l)χ(pm) =
∑∞

m=1

∑

p:pm≡l(modk)

1

mpms
for σ > 1.

Let s = σ > 1. The terms with m ≥ 2 contribute at most
∑

p

∑∞
m=2

1

mpmσ
<

∑

p

∑∞
m=2

1

pm
<
∑∞

n=2

∑∞
m=2

1
nm =

∑∞
n=2

1
n(n−1) = 1 to this sum. Hence the

right-hand side of (5.6) is
∑

p:p≡l(modk)

1

pσ
+ O(1). Our goal is to prove that

this tends to ∞ as σ ↓ 1, as this implies that there exist infinitely many primes
p with p ≡ l(modk).

The contribution of χ0 to the left-hand side of (5.6) is

1

ϕ(k)
logL(σ, χ0) =

1

ϕ(k)

∑

p

∞∑

m=1

1

mpmσ
− 1

ϕ(k)

∑

p|k

∞∑

m=1

1

mpmσ
.

Since the first term on the right-hand side tends to ∞ as σ ↓ 1, whereas the
second term is bounded, it suffices to prove that, for χ 6= χ0, logL(σ, χ) is
bounded as σ ↓ 1.

First we note that for χ 6= χ0 the series L(s, χ) =
∑∞

n=1

χ(n)

n
converges for

σ > 0. Because of (5.2) the partial sums
{
∑N

n=1 χ(n)
}∞

N=1
are bounded. The

factors 1
ns tend in absolute value monotonically to 0. Hence, by Dirichlet’s cri-

terion (see Exercise 3),
∑∞

n=1

χ(n)

ns
converges for σ > 0 and, by the properties

of Dirichlet series, L(s, χ) is an analytic function on σ > 0 for χ 6= χ0.

Consider the product

P (s) :=
∏

χ

L(s, χ)

where χ runs through all characters mod k. If L(1, χ) = 0 for at least one

character χ 6= χ0, then the simple zero at s = 1 of L(s, χ0) = ζ(s)
∏

p|k

(

1 − 1
ps

)

would be cancelled by the zero of L(s, χ) at s = 1 and P (s) would be regular
for σ > 0. Otherwise L(1, χ) 6= 0 and logL(s, χ) → logL(1, χ) for all χ 6= χ0. It
is therefore sufficient to prove that

P (s) is not regular for σ > 0, (5.7)

and the proof of an arithmetic theorem has been reduced to a result on analytic
functions.

Suppose P (s) is regular for s = σ > 0. Then (5.6) holds for σ > 0. On applying
it with l = 1 we obtain

logP (σ) =
∑

χ logL(σ, χ) = ϕ(k)
∑∞

m=1

∑

p:pm≡1(modk)

1

mpmσ
(σ > 0).
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Note that if ϕ(k) = h, then ph ≡ 1 (mod k) for every prime p with p 6 |k. Hence,
on taking σ = 1

h , and only considering m = h, we obtain

logP (
1

h
) ≥ ϕ(k)

∑

p6| k

1

hp
=
ϕ(k)

h




∑

p

1

p
−
∑

p|k

1

p



 = ∞.

Thus P (s) is not regular for σ > 0, and therefore Dirichlet’s theorem has been
proved.

5.3 Siegel zeros

It is rather simple to prove that ζ(s) has no real zeros σ with 0 < σ < 1. How-
ever, the generalization to L-functions is not known. Since remainder terms are
closely related to zero-free regions, estimates for real zeros of L-functions are
important in this context. Since L′(σ, χ) can be well bounded, estimates for the
zeros follow by the mean value theorem from lower bounds for |L(1, χ)|.

We call the real zeros of L-functions Siegel zeros. The characters assuming
non-real values do not give the worst problems: there exists a positive absolute
constant c such that if χ is a complex character to the modulus k, any zero
β + iγ of L(s, χ) satisfies

β < 1 − c

log k + log (|γ| + 2)
.

When dealing with real characters χ, we may assume χ 6= χ0. Actually, there
is at most one zero close to 1: there exists an absolute constant c > 0 such that
the only possible zero β + iγ of L(s, χ) satisfying |γ| < c

log k , β > 1 − c
log k is a

single simple real zero β1.

Landau showed that values of k with such Siegel zeros are rare: if χ1 and χ2

are distinct real primitive characters to the moduli k1, k2 respectively with real
Siegel zeros β1, β2, then

min(β1, β2) < 1 − c

log k1k2
(c positive constant).

The special Siegel zero with β > 1− c
log k occurs in formulas for the remainder.

For example, denote by π(x; k, l) the number of primes at most x which is ≡ l
(mod k). Then, for k ≤ exp [(logx)1/2]

π(x; k, l) =
x

ϕ(k) logx
− χ1(l)x

β1

ϕ(k)β1 logx
+O

{

x exp [−C(logx)1/2]
}

where χ1 is the single real character mod k which has a Siegel zero β1 > 1− c
log k .

The best effective estimate for β1 is β1 < 1 − c
k1/2(log k)2

. This implies

π(x; k, l) =
x

ϕ(k) log x
+O

{

x exp
(

−c(logx)1/2
)}

(5.8)
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only for k ≤ (logx)1−δ for some fixed δ > 0. This shows that the Prime Number
Theorem with error term can be extended to arithmetic progressions and that
the primes are equally distributed among the primitive residue classes mod k.

5.4 Homework for Chapter 5

1. a) Determine all characters mod 12.
b) Determine all characters mod 40.

c) Prove that
∑m−1

l=0 e2πi la
m =

{

m if a ≡ 0 (mod m),

0 otherwise.

2. a) Prove that if χ is a character mod k, then χ is also a character mod k.
b) Prove that

∏

χ |L(σ, χ)| > 1 for σ > 1.

These exercises together with those of Chapter 4 have to be done for Thursday
15 November.

5.5 Further exercises for Chapter 5

1. a) Prove that L(s, χ0) = ζ(s)
∏

p|k

(

1 − 1

ps

)

(σ > 1).

b) Compute ress=1L(s, χ0).

2. Prove Dirichlet’s convergence criterion by partial summation:
if (an) is a complex sequence such that its partial sums are bounded and
(bn) is a sequence of positive real numbers the absolute values of which
tend monotonically to infinity, then the series

∑∞
n=1

an

bn
converges.

3. Prove that if P (s) is regular, then (5.6) holds for σ > 0.

4. Prove that L(s, χ) 6= 0 for σ > 1.

5. Let χ be the character mod 4 with χ 6= χ0. Check whether L(s, χ) has a
Siegel zero.
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Sieve methods.
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6.1 Some classical additive problems

Sieve methods and the Hardy-Littlewood circle method belong to the most suc-
cessful methods when dealing with problems of the following types. We deal
with them in Chapter 6 and 7, respectively. The simplest sieve method is the
sieve of Eratosthenes by which all the composite numbres are sieved out so that
the primes are left.

Goldbach’s problem. In two letters to Euler in 1742, Goldbach conjectured that
every even integer > 2 is the sum of two primes and that every odd integer > 5
is the sum of three primes. The latter statement was asymptotically solved by
Vinogradov in 1937. He proved by the Hardy-Littlewood circle method that
every odd integer > N0 is the sum of three primes, and even that the number
of such presentations of odd N is >> N 2. In 1922 Hardy and Littlewood had
applied their method to prove such results under assumption of the GRH. The
attacks to the still open binary problem for even integers are closely related to
attacks to the Twin prime problem. Chen has proved that the number of primes
p such that N − p is composed of at most two primes is >> N

(log N)2 . Chen used

a sieve method and multiplicative number theory. By the Circle method it can
be shown that the number E(N) of even numbers n ≤ N for which n is not the
sum of two primes satisfies E(N) << N

(log N)A for some constant A.

35
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Another classical problem is as follows. Let P (x) denote any irreducible poly-
nomial which represents integer values at integer points which have no common
nontrivial divisor. Does P (x) represent a prime for infinitely many integers x?
The classical example is x2 + 1. Revealed posthumously as little more than a
fragment in one of Chebyshev’s manuscripts, it was first published and proved
by Markov in 1895 that the greatest prime factor Px of

∏

n≤x(n2 + 1) satisfies
Px/x→ ∞ as x→ ∞. Hooley proved by combining Chebyshev’s method with a
sieve method in 1967 that Px > x11/10 for any irreducible quadratic polynomial
x2 −D with D ∈ Z.

By another sieve Hooley obtained a conditional result for Artin’s conjecture
on primitive roots. Artin conjectured that for any given integer a other than
1,−1 or a perfect square, the number Na(x) of primes p ≤ x for which a is a
primitive root modulo p satisfies

Na(x) ∼ A(a)x

logx
(x → ∞)

with A(a) > 0. Hooley proved this (with a revised value of A(a) proposed by
Heilbronn) subject to the assumption that the Riemann hypothesis holds for
Dedekind zeta functions over certain Kummerian fields.

6.2 Sieve methods

Let A be a finite set of integers and P a set of primes. A sieve method deals
with estimates for the number S of elements from A that are not divisible by
any prime from P . To have nontrivial estimates for S, the set A should be
regular in some way. We require that the number |Ad| of elements of

Ad := {a ∈ A|a ≡ 0 (mod d)}

should satisfy

|Ad| =
ω0(d)

d
|A| + rd for d squarefree

where ω0(d) is a multiplicative function and |rd| is small. Hence, for every d the
fraction of elements of A divisible by d should be almost a multiple of 1/d.

For example, if A = (x− y, x], then

|Ad| =
1

d
y + rd with |rd| ≤ 1

and if A = {n(n+ 2)|1 ≤ n ≤ x} then |Ap| = 2
px+ rp for p > 2 prime and

|Ad| =
2ω(d)

d
x+ rd with |rd| ≤ ω0(d) (6.1)

for odd d. Recall that ω(d) =
∑

p|d 1.

We are interested in S(A,P, z) := |
{

a ∈ A| gcd (a,
∏

p∈P,p≤z p) = 1
}

|.
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We expect that, under regularity conditions,

S(A,P, z) ≈ |A|
∏

p∈P,p≤z

(

1 − ω0(p)

p

)

=: |A|V (z).

Sieve results provide upper and lower bounds for S(A,P, z) in terms of |A|V (z).
The method is usually elementary, combinatorial and complicated. An estimate
which is sufficient for several applications is referred to as Brun’s sieve (HR,
p.68). It states that if there is a constant c0 such that

ω0(p) ≤ c0 (6.2)

for all p ∈ P, p ≤ z, and moreover

|Rd| ≤ ω0(d) if µ(d) 6= 0, gcd (d,
∏

p∈P,p≤z p) = 1, (6.3)

then

S(A,P, z) << c0 | A |
∏

p<z

(

1− ω0(p)

p

)

if z ≤ |A|c0 . (6.4)

As an application we have the following general result on arithmetic progres-
sions:

Let ai, bi (i = 1, . . . , g) be pairs of integers satisfying gcd (ai, bi) = 1 for i =
1, . . . , g. Suppose

E :=

g
∏

i=1

ai

∏

1≤r<s≤g

(arbs − asbr) 6= 0.

Then, for x ≥ 2,

| {m ≤ x : |aim+ bi| is prime for i = 1, . . . , g} |

<<g
x

(log x)g

∏

p|E

(

1 − 1

p

)ω0(p)−g

where ω0(p) denotes the number of solutions of
∏g

i=1(aim+ bi) ≡ 0 (mod p).

The latter statement is proved by applying the former statement with P is the
set of all primes, x = |A|, z ≈

√

|A|. The proof involves some estimations too
complicated to be presented here.

We give some straightforward applications.

1. Take a1 = a2 = 1, b1 = 0, b2 = 2, g = 2.
It follows that the number of primes p ≤ x such that p, p + 2 is a twin

prime is <<
x

(logx)2
, whence

∑′

1
p <∞.

This has been proved by Brun.

2. Take g = 2, a1 = 1, b1 = 0, a2 = 2, b2 = −1.
It follows that the number of primes p ≤ x such that 2p− 1 is a prime is

<<
x

(log x)2
.
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3. Take g = 1, a1 = k, b1 = l. We assume gcd (k, l) = 1.
It follows that ω0(p) = 0 for p|k whence

π(x, k, l) <<
x/k

log (x/k)

∏

p|k

(

1 − 1

p

)−1

=
x

ϕ(k) log (x/k)
.

This is a weak form of the so-called Brun-Titchmarsh theorem.

4. Take g = 2, a1 = 1, b1 = 0, a2 = 1, b2 = −2N .
It follows that ω0(p) = 1 for p|N whence the number of prime pairs (p, q)
such that p+ q = 2N is

<<
2N

(log 2N)2

∏

p|N

(

1 +
1

p

)

.

Selberg introduced a sieve method which in some ways simplifies and im-
proves upon Brun’s sieve. Selberg presented both an upper bound and a lower
bound sieve. The problem is that the summation

∑∗
d|n extends over so many

terms that an estimation of the remainder exceeds the main term for this reason.
The basic idea is to find upper and lower bounds for the remainder terms such
that the remainder consists of much fewer non-zero terms. There exists now a
great variety of sieve methods. See for example Halberstam-Richert or Hooley.

6.3 The large sieve

In the sieve methods treated up to now a number from A was only sifted out if
it was divisible by some prime p ∈ P . In the large sieve for each prime p ∈ P all
numbers of A are sifted out which belong to one of ω0(p) residue classes mod p.

One can use the large sieve to measure the uniform distribution of the integers
from some set A over the various residue classes. Let A be a set of positive
integers from the interval (X − Y,X ]. For any positive integer q define

A(q, h) =
∑

a∈A,a≡h(modq)

1,

so that
∑q

h=1A(q, h) = |A|. The expression

Dp :=

p
∑

h=1

{

A(p, h) − |A|
p

}2

is a measure for the uniform distribution of A among the residue classes mod p.
Define

S(x) =
∑

a∈A

e2πiax.

Then
p−1
∑

n=1

|S(
n

p
)|2 =

∑

a∈A

∑

a′∈A

p−1
∑

n=1

e2πi(a−a′) n
p .
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The inner sum is p − 1 if a ≡ a′ (mod p) and −1 otherwise. Hence the sum is
equal to

p
∑

a∈A

∑

a′∈A,a≡a′(modp)

1 − |A|2 = p

p
∑

h=1




∑

a∈A,a≡h(modp)

1





2

− |A|2

so that

pDp = p

p
∑

h=1

A2(p, h) − |A|2 =

p−1
∑

n=1

|S(
n

p
)|2. (6.5)

We shall be concerned with nontrivial estimates of the sum
∑

p≤Y0
pDp. Note

that this is a sum of type
∑R

r=1 |S(xr)|2 where the real numbers xr are well-
separated in [0, 1] in the sense that |xr − xr′ | ≥ 1

pp′
≥ 1

Y 2
0

for r 6= r′. Put

δ =
1

Y 2
0

. Put S0(x) = S(x)e−2πi(X− 1
2 Y )x. Then |S0(x)| = |S(x)| for all x. Since

S2
0(x) − S2

0(xr) = 2

∫ x

xr

S0(y)S
′

0(y)dy,

we have

|S0(xr)|2 ≤ |S0(x)|2 + 2|
∫ x

xr

|S0(y)S
′

0(y)|dy|.

Integrate over the interval
(
xr − 1

2δ, xr + 1
2δ
)

to arrive at

δ|S0(xr)|2 ≤
∫ xr+ 1

2 δ

xr− 1
2 δ

|S0(x)|2dx + δ

∫ xr+ 1
2 δ

xr− 1
2 δ

|S0(y)S
′

0(y)|dy.

Summing over r and using the disjointness of the intervals we obtain

R∑

r=1

|S0(xr)|2 ≤ δ−1

∫ 1

0

|S0(x)|2dx+

∫ 1

0

|S0(y)S
′

0(y)|dy.

Note that
∫ 1

0 |S0(x)|2dx = |A|. Similarly
∫ 1

0 |S′

0(x)|2dx ≤ π2Y 2|A|, since

|a− (X − 1
2Y )| ≤ 1

2Y for every a ∈ A. By Cauchy’s inequality we obtain

∑

p≤Y0

pDp =

R∑

r=1

|S(xr)|2 =

R∑

r=1

|S0(xr)|2 ≤ δ−1|A|+|A|1/2·πY |A|1/2 = (Y 2
0 +πY )|A|.

This proof is due to Gallagher. Bombieri and Davenport obtained the sharper
estimates 2 max (Y, Y 2

0 )|A| and (Y 1/2 + Y0)
2|A|, respectively. The saving com-

pared with the trivial estimate 2Y Y0|A| is very considerable if Y0 ≤ Y 1/2.

6.4 Homework for Chapter 6

1. Let f be an arithmetic function with f(1) = 1 and m,n, p positive integers
with p squarefree.
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a) Prove that
1

lcm(m,n)
=

1

mn

∑

k| gcd (m,n) ϕ(k).

b) Prove that
∑

m|p,n|p
f(m)f(n)

lcm(m,n)
=
∑

k|p ϕ(k)y2
k , where yk =

∑

n with k|n,n|p
f(n)

n
.

c) Prove that f(n) = n
∑

k with n|k,k|p ykµ

(
k

n

)

.

2. Compute a lower bound for
∏

p≤x

(

1 − 1

p

)−1

which tends to ∞ when

x → ∞.

These exercises also have to be done for Thursday 29 November.

6.5 Further exercises for Chapter 6

1. Prove formula (1.1).

2. a) Prove that
∑

d|n µ(d)
ω0(d)

d
=
∏

p|n

(

1 − ω0(p)

p

)

.

b) Prove that
∑

d|n µ(d)|Ad| = |A|
∏

p|n

(

1 − ω0(p)

p

)

+
∑

d|n µ(d)rd.

c) Check that S(A,P, z) =
∑∗

d µ(d)|Ad| where the summation extends
over all d which are composed of primes p ∈ P with p ≤ z.

3. Give an upper bound for the number of primes p ≤ x such that both kp+1
and lp+ 1 are primes for given integers k, l with 1 < k < l.
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The Hardy-Littlewood

circle method.

Literature:

R. C. Vaughan, The Hardy-Littlewood Method, Cambridge University Press,
1981.

The Hardy-Littlewood method or circle method has been applied to several
classical number theoretic problems of an additive type. We mention the most
famous ones.

A classical problem which has been settled is Waring’s problem. In 1770 Waring
asserted that every positive integer is a sum of at most nine positive integral
cubes, also a sum of at most 19 biquadrates, and so on. The first proof that
every integer is the sum of four squares was given by Lagrange in the same year
1770. Let g(k) be the least s such that every positive integer is a sum of at most
s kth powers of positive integers. In 1909 Hilbert showed by a combinatorial
argument that g(k) is finite for all k. It is easy to show that

g(k) ≥ 2k +

[(
3

2

)k
]

− 2 for all k ≥ 3. (7.1)

It is very plausible that this always holds with equality, and the current state is
as follows. Suppose that k 6= 4. It has been shown that when

2k

{(
3

2

)k
}

+

[(
3

2

)k
]

≤ 2k (7.2)

one has equality sign in (7.1), but when (7.2) is false one has either

g(k) = 2k +

[(
3

2

)k
]

+

[(
4

3

)k
]

− 2

or

g(k) = 2k +

[(
3

2

)k
]

+

[(
4

3

)k
]

− 3

41



42 CHAPTER 7. THE HARDY-LITTLEWOOD CIRCLE METHOD.

according as
[(

4

3

)k
][(

3

2

)k
]

+

[(
4

3

)k
]

+

[(
3

2

)k
]

is equal to 2k or larger than 2k.

In 1964 Stemmerl verified on a computer that (7.2) holds whenever k ≤ 200000
and in 1957 Mahler showed that there are only finitely many k for which (7.2)
does not hold. No exceptions are known, and unfortunately the method (Thue-
Siegel-Roth method) will not give an upper bound for the solutions. In 1986
Balasubramanian, Deshouillers and Dress proved that every integer > 10367 is
a sum of nineteen fourth powers.
The more fundamental problem is that of estimating the number G(k), defined
for k ≥ 2 to be the least s such that every sufficiently large natural number
is the sum of at most s kth powers. It turns out that G(k) is much smaller
than g(k) when k is large. The only known values of G(k) are G(2) = 4 and
G(4) = 16, the latter result due to Davenport in 1939. In 1943 Linnik showed
that G(3) ≤ 7, Davenport proved G(5) ≤ 23, G(6) ≤ 36 in 1942. Vinogradov
has shown that G(k) ≤ (2 + o(1))k log k as k → ∞. It is conjectured that
G(3) = 4.

Another classical problem set starts with van der Waerden who proved in 1927
that given natural numbers l, r there exists an n0(l, r) such that if n ≥ n0(l, r)
and {1, 2, . . . , n} is partitioned into r sets, then at least one set contains l terms
in arithmetic progression.

For an arbitrary set A of natural numbers, let

A(n) = A(n,A) =
∑

a≤n,a∈A
1, D(n) = D(n,A) =

1

n
A(n) (7.3)

and write d and d for the lower and upper asymptotic densities of A,

d = d(A) = liminfn→∞D(n) and d = d(A) = limsupn→∞D(n) (7.4)

respectively. When d = d let d = d(A) denote their common value, the asymp-
totic density of A. Erdős and Turán (1936), in discussing the nature of the
known proofs of van der Waerden’s theorem, conjectured that every set A with
d(A) > 0 contains arbitrarily long arithmetic progressions. An equivalent as-
sertion is that if there is an l such that A contains no arithmetic progression of
l terms, then d(A) = 0.

The first non-trivial case is l = 3. The initial breakthrough was made by Roth
(1952, 1953, 1954) in establishing this case by an ingenious adaptation of the
Hardy-Littlewood method. We shall give his proof later in this chapter.

By a different method, Szemerédi (1969) proved the conjecture for l = 4, and
Roth (1972) gave an alternative proof by an approach related to that of his
earlier method.
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In 1975, Szemerédi established the general case. Unfortunately Szemerédi’s
proof uses van der Waerden’s theorem. More recently Furstenburg (1977) has
given a proof of Szemerédi’s theorem based on ideas from ergodic theory. (This
is one of the subjects of a course which is given by Frank Redig.) In 2002 Gow-
ers gave still another proof of Szemerédi’s theorem giving better quantitative
estimates.

It follows that sequences which are sufficiently dense contain arbitrarily long
arithmetic progressions. It was a old conjecture that the primes are such a se-
quence. Quite recently this was proved by Green and Tao. Erdős conjectured
that (an)∞n=1 is such a sequence when

∑
an diverges.

Let M(n) denote the largest number of elements which can be taken from
{1, 2, . . . , n} with no three of them in progression. Let

µ(n) = n−1M(n).

Then Roth’s theorem is the assertion limn→∞ µ(n) = 0. As the following lemma
shows, it is quite easy to prove that the limit exists. Its value is another matter.

Lemma 7.1. The limit limn→∞ µ(n) exists. Also, for m ≥ n one has
µ(m) ≤ 2µ(n).

Proof. It is a trivial consequence of the definition of M that

M(m+ n) ≤M(m) +M(n).

Hence
M(m) ≤

[m

n

]

M(n) +M
(

m− n
[m

n

])

≤ m

n
M(n) + n.

Therefore µ(m) ≤ µ(n) + n/m, so that

lim sup
m→∞

µ(m) ≤ µ(n)

whence
lim sup
m→∞

µ(m) ≤ lim inf
n→∞

µ(n).

Also, when m ≥ n, M(m) ≤ (m
n + 1)M(n) ≤ 2M(n)m

n . �

The following theorem not only shows that the limit is 0, but gives a bound for
the size of M(n).

Theorem 7.1. (Roth) Let n ≥ 3. Then µ(n) � (log logn)−1.

Choose M ⊂ {1, 2, . . . , n} so that ]M = M(n) and no three elements of M are
in arithmetic progression. Let

f(α) =
∑

m∈M
e(αm).
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Then

M(n) =

∫ 1

0

f(α)2f(−2α)dα (7.5)

since the right-hand side is the number of solutions of m1 + m2 = 2m3 with
m1,m2,m3 ∈ M and, by the construction of M, such solutions can only occur
when m1 = m2 = m3.
Let κ denote the characteristic function of M, so that

f(α) =
n∑

x=1

κ(x)e(αx). (7.6)

Suppose that

m < n, (7.7)

and consider

v(α) = µ(m)

n∑

x=1

e(αx) (7.8)

and

E(α) = v(α) − f(α).

Then

E(α) =
n∑

x=1

c(x)e(αx) (7.9)

with

c(x) = µ(m) − κ(x). (7.10)

The idea of the proof is that, if M(n) is close to n, then

∫ 1

0

f(α)2f(−2α)dα

ought to be closer to M(n)2 than to M(n). To show this, one first of all uses
the disorderly arithmetical structure of M to replace f by v with a relatively
small error. It is a fairly general principle that sums of the form

∑

x≤n,x∈A
e(αx)

tend to have large peaks at a/q when the elements of A are regularly distributed
in residue classes modulo q. Note that v(α) has its peaks at the integers.

Let

F (α) =
m−1∑

z=0

e(αz). (7.11)

Lemma 7.2. Let q be a natural number with q < n/m, and for y = 1, 2, . . . , n−
mq let

σ(y) = σ(y;m, q) =

m−1∑

x=0

c(y + xq). (7.12)
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Then
σ(y) ≥ 0 (y = 1, 2, . . . , n−mq) (7.13)

and

F (αq)E(α) =

n−mq
∑

y=1

σ(y)e(α(y +mq − q)) +R(α) (7.14)

where R(α) satisfies
|R(α)| < 2m2q. (7.15)

Proof. By collecting together the terms in the product FE for which x+ zq =
h+mq − q one obtains

F (αq)E(α) =
n∑

h=1+q−mq

e(α(h+mq − q))

×
m−1∑

z=0 with 1≤h+q(m−1−z)≤n

c(h+ q(m− 1 − z)).

The innermost sum is at most m in absolute value, and so the total contribu-
tion from the terms with h ≤ 0 and h > n −mq does not exceed, in absolute
value, m(mq + (m − 1)q) < 2m2q. For the remaining values of h one has
1 ≤ h + q(m − 1 − z) ≤ n for all z in the interval [0,m − 1]. This gives (7.14)
and (7.15).

By (7.10) and (7.12),

σ(y) = M(m) −
m−1∑

x=0

κ(y + xq).

Let

r =

m−1∑

x=0

κ(y + xq).

Then r is the number of elements of M among y, y + q, . . . , y + (m − 1)q.
Let these elements be y + x1q, . . . , y + xrq. Then no three are in arithmetic
progression. Hence no three of x1, . . . , xr are in arithmetic progression. Likewise
for 1 + x1, . . . , 1 + xr. Moreover 1 + xj ≤ m. Hence r ≤ M(m), which gives
(7.13). �

Lemma 7.3. Suppose that 2m2 < n. Then, for every real number α,

|E(α)| < 2n(µ(m) − µ(n)) + 16m2.

Proof. By a theorem of Dirichlet, there exist a, q such that (a, q) = 1, 1 ≤ q ≤
2m and |α− a/q| ≤ 1/(2qm). Then

F (αq) = F (αq − a) = F (β)
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where |β| ≤ 1/(2m). Hence, by (7.11),

|F (αq)| =| sinπmβ

sinπβ
|≥ 2m

π
.

Thus, by Lemma 7.2,

1

2
m|E(α)| ≤ 2

π
m|E(α)| ≤ |F (αq)E(α)|

<

n−mq
∑

y=1

σ(y) + 2m2q < mE(0) + 8m3.

Moreover, by (7.9) and (7.10),

E(0) =

n∑

x=1

(µ(m) − κ(x)) = n(µ(m) − µ(n)).

The lemma follows at once. �

Proof of Theorem 7.1. Let

I =

∫ 1

0

f(α)2v(−2α)dα. (7.16)

Then, by (7.6) and (7.8),

I =
∑

a∈M

∑

b∈M,2|a+b

µ(m).

Thus, if M1 is the number of odd elements of M and M2 the number of even
elements, so that M1 +M2 = M(n), then

I = µ(m)(M2
1 +M2

2 ) ≥ 1

2
µ(m)M(n)2. (7.17)

By (7.5) and (7.16),

|M(n) − I | ≤
(

max
α

|E(α)|
)∫ 1

0

|f(α)|2dα.

Therefore, by Lemma 7.3 and Parseval’s identity, when 2m2 < n one has

|M(n) − I | ≤ (2n(µ(m) − µ(n)) + 16m2)M(n).

Hence, by (7.17),

µ(m)µ(n) ≤ 4(µ(m) − µ(n)) + 34m2n−1 (2m2 < n). (7.18)

Letting n→ ∞ and then m→ ∞ shows that τ = limn→∞ µ(n) satisfies τ2 ≤ 0.
To establish the quantitive version of this, let

λ(x) = µ
(

23x
)

.
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By Lemma 7.1, it suffices to show that λ(2x) � x−1. By (7.18),

λ(y)λ(y + 1) ≤ 4(λ(y) − λ(y + 1)) + 34× 2−3y

.

Dividing by λ(y)λ(y + 1), summing over y = x, x+ 1, . . . , 2x− 1 and appealing
to Lemma 7.1 gives one

x ≤ 4λ(2x)−1 + 200xλ(2x)−22−3x

.

When λ(2x) > 1/x the second term on the right is < 1
2x for x sufficiently large,

so that λ(2x) < 8/x, which gives the desired conclusion. �

7.1 Homework for Chapter 7

1. Let Rs(m,n) be the number of representations of m as the sum of s non-

negative kth powers, none of which exceed n. Put f(α) =
∑N

m=1 e(αm
k),

where N = [n1/k].
a) Prove that

(f(α))s =
sNk
∑

m=s

Rs(m,n)e(αm).

b) Prove that
Rs(m,n) = Rs(m,m) for m ≤ n.

c) Prove that

Rs(n, n) =

∫ 1

0

(f(α))se(−αn)dα.

2. Let P,Q denote real numbers with P > 1, Q ≥ 2P . Show that the
intervals {

α : |α− a/q| ≤ 1

qQ

}

with q ≤ P and (a, q) = 1 are pairwise disjoint.

These exercises also have to be done for Thursday 29 November.

7.2 Further exercises for Chapter 7

1. Prove Dirichlet’s theorem that for given m there exist a, q such that
(a, q) = 1, 1 ≤ q ≤ m and |α− a/q| ≤ 1/(qm).

2. Generalize Lemma 7.1 to arithmetic progressions larger than 3.

3. Compute the lower and upper asymptotic densities of
a) the primes b) the squares c) the arithmetic progression {a+ nd}∞n=1.
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Chapter 8

Smooth numbers.

Smooth numbers are numbers composed of small primes. These numbers play
an important role in some algorithms, e.g. factorization algorithms. The study
of smooth numbers is relevant for the complexity analysis of such algorithms.
Surveys of results on these numbers can be found in

K. K. Norton, Numbers with small prime factors and the least kth power non-
residue, Mem. Amer. Math. Soc. No. 106 (1971), AMS, Providence RI, 1971.

A. Hildebrand and G. Tenenbaum, Integers without large prime factors, J.
Théor. Nombres Bordeaux 5 (1993), 411-484.

8.1 Introduction

Let ψ(x, y) denote the number of positive integers ≤ x which are free of prime
factors > y. The behaviour of ψ(x, y) depends on the range of y. Ennola proved
in 1969 that for 2 ≤ y ≤ √

logx one has

ψ(x, y) =
1

π(y)!

∏

p≤y

(
logx

log p

)(

1 +O

(
y2

logx log p

))

. (8.1)

See further Section 8.3.

On the other hand, if y is large, then ψ(x, y) ∼ xρ(u) where u =
logx

log y
and ρ(u)

is defined by

ρ(u) = 1 (0 ≤ u ≤ 1), uρ′(u) + ρ(u− 1) = 0 (u > 1). (8.2)

For u ≥ 3 one has (De Bruijn, 1951, see also Cameron, Erdös, Pomerance

49
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(1983))

ρ(u) = exp

{

−u
(

logu+ log logu− 1 +O

(
log logu

logu

))}

.

De Bruijn has proved that ψ(x, y) ∼ xρ(u) holds for u ≤ (logx)3/8−ε (ε > 0).
See further Section 8.2.

The behaviour of ψ(x, y) changes dramatically around y = log x. This change
is reflected in a result of De Bruijn published in 1966, which will be mentioned
in Section 8.4.
Around 1985 Hildebrand described the asymptotic behaviour of ψ(x, y) itself. It
involves implicitly defined functions. The result is mainly of theoretical interest.
Some of the older estimates are based on the Buchstab functional equation:

ψ(x, y) = ψ(x, z) −∑y<p≤z ψ
(

x
p , p
)

(1 ≤ y < z ≤ x). (8.3)

Most of the modern papers on ψ(x, y) are based on the Hildebrand functional
equation:

ψ(x, y) logx =
∫ x

1

ψ(t, y)

t
dt+

∑

pm≤x,p≤y(log p)ψ
(

x
pm , y

)

(x ≥ 1, y ≥ 1).

(8.4)

8.2 y is large compared to x

We shall show that ψ(x, x1/u) ∼ xρ(u) for 0 < u ≤ 2. We use the so-called
Buchstab functional equation. To see that this formula is correct, observe that
the difference ψ(x, z)−ψ(x, y) equals the cardinality of the set of positive integers
≤ x having greatest prime factor in (y, z]. Let p be a prime with y < p ≤ z.
Then the cardinality of the set of positive integers ≤ x having greatest prime
factor p equals ψ(x

p , p). Thus

ψ(x, z) − ψ(x, y) =
∑

y<p≤z

ψ

(
x

p
, p

)

which is equivalent with (8.3). If we choose z = x, we obtain

ψ(x, y) = [x] −
∑

y<p≤x

[
x

p

]

. (8.5)

For 0 < u ≤ 1 we have ψ(x, y) = [x] ∼ x = xρ(u) for 0 < u ≤ 1.

Let 1 < u ≤ 2. Recall that

∑

p≤x

1

p
= log log x+ γ +O

(
1

logx

)

.
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Hence
∑

x1/u<p≤x

1

p
= logu+O

(
1

log x

)

.

Substituting this into (8.5) yields

ψ(x, x1/u) = x+O(1) − x
∑

x1/u<p≤x

1

p
+O

(
x

log x

)

=

= x− x logu+O

(
x

logx

)

= x(1 − logu) +O

(
x

logx

)

.

On the other hand, for 1 < u ≤ 2, by (8.2),

ρ(u) =

∫ u

1

ρ′(t)dt+ 1 = 1 −
∫ u

1

ρ(t− 1)

t
dt = 1 −

∫ u

1

1

t
dt = 1 − logu.

Thus ψ(x, x1/u) = xρ(u) +O

(
x

logx

)

(1 < u ≤ 2).

The result for general u is achieved by induction reducing the interval (m,m+1]
to the preceding (m− 1,m] by applying the Buchstab functional equation.

Let u ∈ (m,m+ 1]. Then, by ψ
(

x
p , p
)

= ψ

(

x
p ,
(

x
p

) log p
log (x/p)

)

,

ψ(x, x1/u) ≈ ψ(x, x1/m) −
∑

x1/u<p≤x1/m

ψ

(
x

p
, p

)

≈ xρ(m) −
∑

x1/u<p≤x1/m

x

p
ρ

(
log (x/p)

log p

)

≈ xρ(m) −
∫ x1/m

x1/u

x

t
ρ

(
log (x/t)

log t

)

dπ(t)

≈ xρ(m) −
∫ x1/m

x1/u

x

t
ρ

(
logx

log t
− 1

)

d
t

log t

≈ xρ(m) − x

∫ u

m

ρ(ω − 1)

ω
dω = ρ(u).

8.3 y is small compared to x

We prove formula (8.1) in a weakened form and for fixed y. So we want to
estimate the number of positive integers n ≤ x composed of prime factors ≤ y.
Then

n = pk1
1 · · · pkr

r

with p1 = 2, p2 = 3, p3 = 5, . . ., pr is the largest prime ≤ x and

logn = k1 log p1 + . . .+ kr log pr ≤ logx.
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Hence r = π(y). This is the number of integer points (k1, . . . , kr) in the gener-
alized triangle with corner points

(0, 0, . . . , 0),

(
logx

log p1
, 0, . . . , 0

)

, . . . ,

(

0, 0, . . . , 0,
logx

log pr

)

.

For large x this number equals the area

1

r!

(
logx

log p1

)(
logx

log p2

)

· · ·
(

logx

log pr

)

+O(log x)r−1.

Thus,

ψ(x, y) =
1

(π(y))!

∏

p≤y

(
logx

log p

)(

1 +O

(
1

logx

))

.

8.4 A result of De Bruijn

We state a result of De Bruijn which illustrates the transition of the situation
of small y to large y which occurs around y = logx.

Theorem 8.1. (De Bruijn, 1966) Let x ≥ 3, 2 ≤ y ≤ x and write

Z =
logx

log y
log

(

1 +
y

logx

)

+
y

log y
log

(

1 +
log x

y

)

.

Then

logψ(x, y) = Z

{

1 +O

(
1

log y

)

+O

(
1

log logx

)

+O

(
log y

logx

)}

. (8.6)

(Here we assume that y → ∞ and logx/ log y → ∞.)

For example, if y ≈ logx, then

Z = 2
logx

log logx
log 2,

hence logψ(x, logx) ∼ 2
logx

log logx
log 2.

If y ≈ log logx, then

Z =
logx

log log logx
log

(

1 +
log logx

logx

)

+
log logx

log log logx

(

1 +
logx

log logx

)

,

hence logψ(x, log logx) ∼ logx

log log logx
.
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8.5 Homework for Chapter 8

1. Prove
a) ρ(u) > 0 for u > 0.
b) ρ(u) is monotone decreasing for u > 1.

c) ρ(u) ≤ 1

Γ(u+ 1)
for u ≥ 0 where Γ(u) is the Gamma-function defined

by Γ(x) =
∫∞
0 e−ttx−1dt which satisfies Γ(u+ 1) = uΓ(u) and, moreover,

Γ(n) = (n− 1)! for all positive integers n.

2. An important function for the analysis of the ρ-function is the function
ξ(u) defined as the positive function such that

eξ(u) − 1

ξ(u)
= u for u > 1.

a) Prove that if f(x) = (ex − 1)/x, then f(x) = 1 +
x

2!
+
x2

3!
+
x3

4!
+ . . . .

b) Prove that ξ(u) is well defined.

c) Prove that ξ = log ξ + logu+O

(
1

ξu

)

as ξu→ ∞.

d) Prove that ξ = logu+ log logu+O

(
log logu

logu

)

as u→ ∞.

These exercises have to be done before Tuesday 9 January 2008.

8.6 Further exercises for Chapter 8

1. Prove that uρ(u) =
∫ u

u−1
ρ(t)dt for u ≥ 1.

2. Prove (8.3).

3. Prove (8.4).

4. What does (8.6) say if

a)
y

logx
→ 0, b)

logx

y
→ 0, c) y = c logx

where c is come positive constant?

5. Calculate the asymptotic behaviour of ψ
(

x, e
√

log x
)

by using Theorem

8.1.
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Chapter 9

Simultaneous Diophantine

approximations.

A Diophantine approximation is an approximation of a real number by a rational
number. The aim of simultaneous Diophantine approximation is to approximate
distinct real numbers by rational numbers that have the same denominator. The
first two theorems concern the former case, first homogeneous, then inhomoge-
neous.

Theorem 9.1. Let α,Q ∈ R, Q > 1. Then there exist integers p, q with 1 ≤
q < Q such that

|qα− p| ≤ 1

Q
.

Proof. We denote the fractional part of x as {x} = x − [x]. Choose a pos-
itive integer n such that n < Q ≤ n + 1 and consider the n + 2 numbers
0, 1, {α} , {2α} , . . . , {nα}. All of these numbers are in the interval [0, 1]. By the

box principle, one of the intervals
[

0, 1
n+1

]

,
(

1
n+1 ,

2
n+1

]

, . . . ,
(

n−1
n+1 ,

n
n+1

]

,
(

n
n+1 , 1

]

contains at least two of the numbers. But 0 and 1 cannot be numbers which are
in the same interval. Thus there exist numbers r1, r2, s1, s2 with 0 ≤ ri ≤ n,
r1 > r2 such that

|(r1α− s1) − (r2α− s2)| ≤
1

n+ 1
≤ 1

Q
.

Let q = r1 − r2, p = s1 − s2. Then 1 ≤ q ≤ n < Q and |qα− p| ≤ 1

Q
. �

Corollary 9.1. Let α /∈ Q. Then the inequality |α − p
q | < 1

q2 has infinitely

many solutions in rational number p/q.

Theorem 9.2. If α /∈ Q, θ and N > 0 are real numbers, then there exist
integers p and q with q > N such that |qα− p− θ| ≤ 3

q .

55
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Proof. By the previous corollary, there exist numbers r, s ∈ Z with s > 2N
such that |α − r

s | < 1
s2 . We may assume that (r, s) = 1. Choose m ∈ Z such

that |θ− m
s | ≤ 1

2s . We know that there exist integers u, v such that m = vr−us.
Moreover, we can choose v such that |v| ≤ s/2. We obtain

|qα− p− θ| ≤ |qα− p− m

s
| + |m

s
− θ| ≤

≤ |qα− p− vr

s
+ u| + 1

2s
≤ |(q − v)α− (p− u)| + |v||α− r

s
| + 1

2s
≤

≤ |(q − v)α − (p− u)| + 1

2s
+

1

2s
.

Choose q = s+ v and p = r + u. Then we have

|qα− p− θ| ≤ |sα− r| + 1

s
<

2

s
≤ 3

s+ v
=

3

q
.

Furthermore, q ≥ s− |v| ≥ s

2
> N . �

Corollary 9.2. If α /∈ Q and θ ∈ R then the inequality |α − p+θ
q | ≤ 3

q2 has
infinitely many solutions with p ∈ Z, q ∈ N.

The following theorem is a generalization of Theorem 9.1 to the simultaneous
case. (By using the point (1, 1, . . . , 1) it is possible even to require q < Qn.)

Theorem 9.3. (Dirichlet) Let α1, α2, . . . , αn ∈ R, Q ∈ N, Q > 1. Then there
exist integers p1, p2, . . . , pn, q with 1 ≤ q ≤ Qn such that

|qαj − pj | ≤
1

Q
for j = 1, . . . , n.

Proof. Consider the points of Rn of the form

({α1x} , {α2x} , . . . , {αnx}) with x = 0, 1, . . . , Qn.

So we getQn+1 points in the unit cube T = {(t1, . . . , tn) | 0 ≤ tj ≤ 1 for j = 1, . . . , n}.
Divide each edge of T into Q equal parts of length 1/Q. So T is split into Qn

subcubes. Thus there is a subcube that contains at least two of theQn+1 points.
Therefore, there are x(1), x(2) with 0 ≤ x(2) < x(1) < Qn such that |

{
αjx

(1)
}
−

{
αjx

(2)
}
| ≤ 1

Q for j = 1, . . . , n. We define integers y
(1)
1 , y

(1)
2 , . . . , y

(1)
n and

y
(2)
1 , y

(2)
2 , . . . , y

(2)
n such that

{

αjx
(1)
}

= αjx
(1) − y

(1)
j ,
{

αjx
(2)
}

= αjx
(2) − y

(2)
j .

It follows that

|(αjx
(1) − y

(1)
j ) − (αjx

(2) − y
(2)
j )| ≤ 1

Q
for j = 1, . . . , n.
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Choose q = x(1) − x(2), pj = y
(1)
j − y

(2)
j for j = 1, . . . , n. Then we have

1 ≤ q < Qn and

|qαj − pj | ≤
1

Q
for j = 1, . . . , n.

�

Corollary 9.3. Assume that at least one of the numbers α1, α2, . . . , αn ∈ R

is irrational. Then there are infinitely many tuples of integers p1, p2, . . . , pn, q
with (p1, p2, . . . , pn, q) = 1 such that

|αj −
pj

q
| < 1

q1+1/n
for j = 1, . . . , n.

Proof. By Theorem 9.3, for each Q we can choose integers p1, . . . , pn, q with

|αj −
pj

q
| ≤ 1

qQ
<

1

q1+1/n
for j = 1, . . . , n.

Choose Q0 = 2. Then we find a solution p
(0)
1 , . . . , p

(0)
n , q(0). Dividing these

numbers by their greatest common divisor, we get a coprime solution.

Assume αj /∈ Q. Then |αj −
p
(0)
j

q(0) | 6= 0. Choose Q1 ∈ N such that |q(0)αj−p(0)
j | >

1/Q1. For this Q1 we find a new solution p
(1)
1 , . . . , p

(1)
n , q(1) by Theorem 9.3.

Dividing the numbers by their greatest common divisor, we get a new coprime

solution since |q(1)αj − p
(1)
j | ≤ 1

Q1
.

Now |αj −
p
(1)
j

q(1) | 6= 0. Choose Q2 ∈ N such that |q(1)αj − p
(1)
j | > 1/Q2.

We proceed by induction. In this way we find infinitely many distinct coprime
solutions p1, p2, . . . , pn, q. �

The generalization of Theorem 9.2 to simultaneous approximation is deeper.
We say that α1, α2, . . . , αn are linearly independent over Z, if

m1α1 +m2α2 + . . .+mnαn = 0, m1, . . . ,mn ∈ Z

implies that m1 = m2 = . . . = mn = 0.

Theorem 9.4. (Kronecker,1884) Let 1, α1, α2, . . . , αn be linearly independent
over Z. Assume that N > 0, ε > 0 and θ1, θ2, . . . , θn are real numbers. Then
there exist integers p1, p2, . . . , pn, q with q > N such that

|qαj − pj − θj | < ε for j = 1, . . . , n.

Remark. The condition that 1, α1, α2, . . . , αn are linearly independent should
not be omitted. For n = 1 it means that α is irrational. For α1 = 1 the inequality
|qα1 − p1 − 1

2 | < 1
4 is not soluble. Likewise the system |q

√
2 − p1 − 1

4 | < 1
20 ,

|q
√

8 − p2 − 1
4 | < 1

20 is not soluble.
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Our proof of Theorem 9.4 is derived from the following theorem which is proved
by complex analysis. A proof using only real analysis can be found in Hardy
and Wright, The Theory of Numbers, Ch. 23.

Theorem 9.5. Let α1, α2, . . . , αn be linearly independent over Z. Assume that
N > 0, ε > 0 and θ1, θ2, . . . , θn are real numbers. Then there are numbers
p1, p2, . . . , pn ∈ Z and t ∈ R, t > N such that

|tαj − pj − θj | < ε for j = 1, . . . , n.

For the proof we need the following lemmas:

Lemma 9.1. Assume that c1, . . . , cn are distinct real numbers and b1, . . . , bn
are arbitrary complex numbers. Put f(t) =

∑r
ν=1 bνe

cνit. Then

lim
T→∞

1

T

∫ T

0

f(t)e−cµitdt = bµ for µ = 1, . . . , r.

Proof. For c = 0 we obtain limT→∞
1

T

∫ T

0 ecitdt = limT→∞
T

T
= 1.

For c 6= 0 we get

1

T

∫ T

0

ecitdt =
1

ciT

[
ecit
]t=T

t=0
=
eciT − 1

ciT
→ 0 if T → ∞.

Thus

lim
T→∞

1

T

∫ T

0

ecitdt =

{

1 if c = 0,

0 if c 6= 0.

It follows that

lim
T→∞

1

T

∫ T

0

f(t)e−cµitdt = lim
T→∞

r∑

ν=1

bν
1

T

∫ T

0

e(cν−cµ)itdt = bµ.

�

Lemma 9.2. Let ψ(x1, . . . , xn) = 1 + x1 + . . .+ xn. Let k ∈ N. Then

(ψ(x1, . . . , xn))k =
∑

k1+...+kn≤k,kj≥0,kj∈Z

ak1...knx
k1
1 · · ·xkn

n

with ak1...kn positive integers such that

∑

k1,...,kn

ak1...kn = (n+ 1)k.

The number of terms in the summation is at most (k + 1)n.
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Proof. The first assertion follows directly, the second follows by taking x1 =
. . . = xn = 1. For each kj there are k + 1 choices, so the total number of terms
does not exceed (k + 1)n.

Proof of Theorem 9.5. (H. Bohr, 1914) Let

F (t) = 1 +

n∑

j=1

e2πi(αj t−θj), t ∈ R.

Then |F (t)| ≤ n+ 1 for all t ∈ R. By Lemma 9.2 we have

(F (t))k =
∑

k1+...+kn≤k,kj≥0,kj∈Z

ak1...kne(

n∑

j=1

kj(αj t− θj)),

with at most (k + 1)n terms and the sum of the coefficients is (n+ 1)k.
Define

bk1...kn = ak1...kne(−
n∑

j=1

kjθj).

Then we have |bk1...kn | = ak1...kn and

(F (t))k =
∑

k1+...+kn≤k,kj≥0,kj∈Z

bk1...kne(
n∑

j=1

kjαjt).

Since α1, α2, . . . , αn are linearly independent, all terms
∑n

j=1 kjαj are distinct.
By Lemma 9.1 we get

bk1...kn = lim
T→∞

1

T

∫ T

0

(F (t))ke(−
n∑

j=1

kjαjt)dt.

Assume that there exist real numbers λ < n+ 1 and t0 > 0 such that

|F (t)| ≤ λ for t ≥ t0.

Then

|bk1...kn | ≤ lim
T→∞

1

T

∫ T

0

|(F (t))k |dt

≤ lim
T→∞

1

T

∫ t0

0

(n+ 1)kdt+ lim
T→∞

1

T

∫ T

t0

λkdt = λk .

Thus
(n+ 1)k =

∑

|bk1...kn | ≤ λk(k + 1)n.

Therefore
(
n+ 1

λ

)k

≤ (k + 1)n.

The left-hand side grows exponentially in k to ∞, the right-hand side polyno-
mially. Thus, if k is sufficiently large then we get a contradiction. Therefore for
each t0 > 0 and λ < n+ 1 there exists a t > t0 with |F (t)| > λ.



60 CHAPTER 9. SIMULTANEOUS DIOPHANTINE APPROXIMATIONS.

Let N > 0 and 0 < ε < 1
2 . For t0 = N and λ = n+ 1 − ε2

2 we can find a t > N
such that for j = 1, . . . , n

n+ 1 − ε2

2
< |F (t)| ≤ |1 + e((αjt− θj))| + n− 1.

Thus

|eπi(αjt−θj) + e−πi(αjt−θj)| > 2− ε2

2

which implies

cos (π(αj t− θj)) > 1 − ε2

4
for j = 1, . . . , n.

Observe that | cosπx| > 1− δ2

4 =⇒ ||x|| < δ, where ||x|| denotes the distance of
x from the nearest integer number. (Exercise.) Thus

||αjt− θj || < ε for j = 1, . . . , n.

Let pj be the integer number nearest to αjt− θj . Then it follows that

|αjt− pj − θj | < ε for j = 1, . . . , n.

�

Proof of Theorem 9.4. Put A = max (1, |α1|, |α2|, . . . , |αn|). We use Theorem
9.5 for 1, α1, . . . , αn with 0, θ1, . . . , θn as the corresponding θ′s and with ε/2A
in the place of ε and N + ε instead of N . Hence there exist integers q =
p0, p1, . . . , pn ∈ Z and t ∈ R, t > N + ε such that

|tαj − pj − θj | <
ε

2A
for j = 1, . . . , n

and

|t− q| < ε

2A
.

It follows that q > t− ε > N and

|qαj − pj − θj | ≤ |(q− t)αj |+ |tαj − pj − θj | <
ε

2
+

ε

2A
≤ ε for j = 1, . . . , n.

�

Remark. The various proofs of theorems of Dirichlet and Kronecker do not
lead to an algorithm which computes approximating numbers. In 1983 A. K.
Lenstra, H. W. Lenstra and L. Lovász developed a basis reduction algorithm
that can find approximations as in Theorem 9.3 in an efficient way, but the
bound is somewhat worse than the one in Dirichlet’s theorem.
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9.1 Homework for Chapter 9

1. Which of the following systems are solvable in x, y, z ∈ Z with (x, y, z) 6=
(0, 0, 0)?

a) |x log 2 − y| ≤ 1

100
, |x log 3 − z| ≤ 1

100
,

b) |x log 2− y| ≤ 1

100
, |x log 4 − z| ≤ 1

100
,

c) |x log 2 − y| ≤ 1

100
, |x log 3 − z − 1/2| ≤ 1

100
,

d) |x log 2− y| ≤ 1

100
, |x log 4 − z − 1/2| ≤ 1

100
.

2. a) Prove Corollary 9.2.

b) Prove that the equation x2 − 2y2 = ±1 has infinitely many solutions in
positive integers x, y.

The homework of Chapters 8 and 9 can be put in my mailbox until 9 January,
2008.

9.2 Further exercises for Chapter 9

1. Check whether the following inequalities have infinitely many solutions:

a) |q
√

2 − p| < 1

2q
in p, q ∈ N,

b) |q
√

2 − p−
√

3| ≤ 3

q
in p, q ∈ N,

c) the system |q
√

2− p1| ≤
1√
q
, |q

√
3 − p2| ≤

1√
q

in p1, p2, q ∈ N.

2. Prove:
a) α1, . . . , αn are linearly independent over Z ⇐⇒ α1, . . . , αn are linearly
independent over Q.
b) 1, α are linearly independent over Z ⇐⇒ α /∈ Q.
c) 1,

√
2,
√

3,
√

6 are linearly independent over Z.

3. Prove: | cosπx| ≥ 1 − 1
2δ

2 =⇒ ||x|| < δ.

4. A star has n planets which run with constant angular velocities around
the star and all lie in the same plane. Prove that, seen from the star, the
planets are almost in the same direction (within an angle ε > 0) infinitely
often if
a) the planets have once be seen in the same direction,
b) their angular velocities are linearly independent over Z.


