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Abstract

This paper deals with the numerical solution of initial value problems, for systems of ordinary differential equations, by Runge–
Kutta methods (RKMs) with special nonlinear stability properties indicated by the terms total-variation-diminishing (TVD),
strongly stable and monotonic. Stepsize conditions, guaranteeing these properties, were studied earlier, see e.g. Shu and Osher
[C.-W. Shu, S. Osher, J. Comput. Phys. 77 (1988) 439–471], Gottlieb et al. [S. Gottlieb, C.-W. Shu, E. Tadmor, SIAM Rev. 43
(2001) 89–112], Hundsdorfer and Ruuth [W.H. Hundsdorfer, S.J. Ruuth, Monotonicity for time discretizations, in: D.F. Griffiths,
G.A. Watson (Eds.), Proc. Dundee Conference 2003, Report NA/217, Univ. Dundee, 2003, pp. 85–94], Higueras [I. Higueras, J. Sci.
Computing 21 (2004) 193–223; I. Higueras, SIAM J. Numer. Anal. 43 (2005) 924–948], Gottlieb [S. Gottlieb, J. Sci. Computing
25 (2005) 105–128], Ferracina and Spijker [L. Ferracina, M.N. Spijker, SIAM J. Numer. Anal. 42 (2004) 1073–1093; L. Ferracina,
M.N. Spijker, Math. Comp. 74 (2005) 201–219].

Special attention was paid to RKMs which are optimal, in that the corresponding stepsize conditions are as little restrictive as
possible within a given class of methods. Extensive searches for such optimal methods were made in classes of explicit RKMs, see
e.g. Gottlieb and Shu [S. Gottlieb, C.-W. Shu, Math. Comp. 67 (1998) 73–85], Spiteri and Ruuth [R.J. Spiteri, S.J. Ruuth, SIAM
J. Numer. Anal. 40 (2002) 469–491; R.J. Spiteri, S.J. Ruuth, Math. Comput. Simulation 62 (2003) 125–135], Ruuth [S.J. Ruuth,
Math. Comp. 75 (2006) 183–207].

In the present paper we search for methods that are optimal in the above sense, within the interesting class of singly-diagonally-
implicit Runge–Kutta (SDIRK) methods, with s stages and order p. Some methods, with 1 � p � 4, are proved to be optimal,
whereas others are obtained by a numerical search. We present closed-form expressions for two families of SDIRK methods (with
s � 3) which we conjecture to be optimal for p = 2 and p = 3, respectively. Furthermore we prove, for strongly stable SDIRK
methods, the order barrier p � 4.

We perform numerical experiments, to compare the theoretical properties of various optimal SDIRK methods to the actual TVD
properties in the solution of a nonlinear test equation, the 1-dimensional Buckley–Leverett equation.
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MSC: 65L05; 65L06; 65L20; 65M20

Keywords: Initial value problem; Method of lines (MOL); Ordinary differential equation (ODE); Singly-diagonally-implicit Runge–Kutta method
(SDIRK); Total-variation-diminishing (TVD); Strong-stability-preserving (SSP); Monotonicity

* Corresponding author.
E-mail addresses: Luca.Ferracina@cwi.nl (L. Ferracina), spijker@math.leidenuniv.nl (M.N. Spijker).
0168-9274/$30.00 © 2007 IMACS. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.apnum.2007.10.004



1676 L. Ferracina, M.N. Spijker / Applied Numerical Mathematics 58 (2008) 1675–1686
1. Introduction

1.1. Purpose of the paper

In this paper we deal with the numerical solution of initial value problems, for systems of ordinary differential
equations (ODEs), which can be written in the form

d

dt
U(t) = F

(
U(t)

)
(t � 0), U(0) = u0. (1.1)

The general Runge–Kutta method (RKM), applied to problem (1.1), can provide us with numerical approximations
un of U(n�t), where �t denotes a positive time step and n = 1,2,3, . . .; cf. e.g. [3,4,14,20]. The approximations un

can be defined in terms of un−1 by the relations

yi = un−1 + �t

s∑
j=1

κijF (yj ) (1 � i � s + 1), (1.2a)

un = ys+1. (1.2b)

Here κij are real parameters, specifying the Runge–Kutta method, and yi (1 � i � s) are intermediate approximations
needed for computing un = ys+1 from un−1.

In the following, V stands for the vector space on which the differential equation is defined, and ‖ · ‖ denotes a
convex function on V (i.e.: ‖λv + (1 − λ)w‖ � λ‖v‖ + (1 − λ)‖w‖ for 0 � λ � 1 and v,w ∈ V). Much attention has
been paid in the literature to the property

‖yi‖ � ‖un−1‖ (for 1 � i � s + 1). (1.3)

Clearly, (1.3) implies ‖un‖ � ‖un−1‖. The latter property, as well as property (1.3), is often referred to by the
term strong stability or monotonicity; it is of particular importance in situations where (1.1) results from (method
of lines) semidiscretizations of time-dependent partial differential equations. Choices for ‖ · ‖ which occur in that
context, include e.g. the supremum norm ‖x‖ = ‖x‖∞ = supi |ξi | and the total variation seminorm ‖x‖ = ‖x‖T V =∑

i |ξi+1 − ξi | (for vectors x with components ξi ).
Numerical processes, satisfying ‖un‖T V � ‖un−1‖T V , play a special role in the solution of nonlinear hyperbolic

differential equations and are called total-variation-diminishing (TVD), cf. e.g. [15,29,31,24,20].
We note that, for practical calculations, special importance has been attached, by various authors, to the inequality

‖yi‖ � ‖un−1‖ being fulfilled for all i with 1 � i � s + 1 (rather than just for i = s + 1) – see e.g. [30,10].
In the literature, conditions on �t which guarantee (1.3) were given in the situation where, for given τ0 > 0,∥∥v + τ0F(v)

∥∥ � ‖v‖ (for all v ∈ V). (1.4)

Assumption (1.4) means that the explicit Euler method, with stepsize τ0, is strongly stable. It can be interpreted
as a condition on the manner in which the semidiscretization is performed, in case d

dt
U(t) = F(U(t)) stands for a

semidiscrete version of a partial differential equation. For completeness, we note that (1.4) implies: ‖v + �tF(v)‖ =
‖(1 − �t/τ0)v + (�t/τ0)(v + τ0F(v))‖ � ‖v‖, for 0 < �t � τ0. Consequently, (1.4) is equivalent to∥∥v + �tF(v)

∥∥ � ‖v‖ (whenever 0 < �t � τ0 and v ∈ V).

This form of (1.4) was used, by many authors, in deriving conditions on �t guaranteeing strong stability.
In the literature, stepsize-coefficients c were determined such that strong stability, in the sense of (1.3), is present

for all �t with

0 < �t � c · τ0. (1.5)

For explicit RKMs, this was done by rewriting the right-hand members of (1.2a) as convex combinations of explicit
Euler steps – see e.g. [31,11,30]. For more general RKMs, stepsize-coefficients were obtained e.g. in [12,21,16,17,
8,9]. We note that, in the context of discretizations for hyperbolic differential equations, the above coefficients c are
sometimes called CFL coefficients, see e.g. [11,30].
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Clearly, the larger c, the less restrictive is condition (1.5). For any given method, the maximal stepsize-coefficient c,
with the property that (1.4), (1.5) still imply (1.3), is thus an important characteristic coefficient of the method. When
comparing the computational efficiency of different methods, it is natural to take these characteristic coefficients into
account.

In order to single out efficient RKMs, with a given number of stages s and order of accuracy p, much attention
has been paid to the interesting problem of optimizing, over given classes of RKMs, the special stepsize-coefficients
obtainable via convex combinations of Euler steps, see e.g. [29,31,11,12,34,35,10,28]. The focus in these papers is on
RKMs which are explicit.

Not many results seem to be available about the problem of optimizing the above mentioned characteristic coeffi-
cients, over given classes of implicit RKMs.

Since the beginning of the seventies, much attention has been paid to solving (stiff) ODEs with a special type of
implicit Runge–Kutta methods, viz. the so-called singly-diagonally-implicit Runge–Kutta (SDIRK) methods. These
methods are characterized by matrices K = (κij ) with κij = 0 (j > i) and κii = κ11 �= 0 (2 � i � s). Thanks to this
property of the coefficients κij , the s equations (1.2a) for yi can be solved in s successive stages, rather than in one
(very costly) stage involving all yi . Moreover, if Newton-type iterations are used in the s stages, one may hope to use
repeatedly the stored LU-factorization of a single coefficient matrix I − κ11�tF ′(v).

There exists a vast literature dealing with SDIRK methods, see e.g. [25,6,1,23,3,14,13,7] and the references therein.
We note that SDIRK methods have not only been considered in their own right, but also as implicit part of implicit-
explicit (IMEX) Runge–Kutta methods; see e.g. [2,5,27].

The purpose of the present paper is to analyze the strong stability properties of SDIRK methods. We shall focus
on the problem of determining methods which are optimal, with respect to the characteristic coefficients discussed
above, within the class of s-stage SDIRK methods with given order of accuracy p.

1.2. Scope of the paper

Various theorems have been given, in the literature, which specify the above mentioned characteristic coefficient,
for a given RKM, in terms of the matrix K , see [16,21,8,9,33]. In Section 2 we give a concise review of some of
these results. Corollary 2.5 states that, for all SDIRK methods, the characteristic coefficient is equal to the famous
coefficient R(A,b), which was introduced by Kraaijevanger [22].

Section 3 contains the main results of the paper. We use the material of Section 2 in a systematic search for optimal
methods within the class of SDIRK methods with s stages and order of accuracy p. In Sections 3.1–3.4 we give
optimal methods of orders 1–4, respectively. In Sections 3.2 and 3.3 we present closed-form expressions for SDIRK
methods (with s � 3) which we conjecture to be optimal for p = 2 and p = 3, respectively. In Section 3.5 we prove, for
strongly stable SDIRK methods, the order barrier p � 4. Section 3.6 gives a summary and discussion of the optimal
SDIRK methods found in Sections 3.1–3.4.

In Section 4, we report shortly on a numerical experiment involving the TVD properties of various optimal SDIRK
methods given in Section 3. We apply the methods to a nonlinear hyperbolic test equation, the 1-dimensional Buckley–
Leverett equation.

In the final section, Section 5, we summarize the main findings of the paper.

2. Strong stability and Kraaijevanger’s coefficient

2.1. Kraaijevanger’s coefficient r(K)

Consider a given s-stage Runge–Kutta method (1.2), with (s + 1) × s coefficient matrix K = (κij ). We denote the
s × s matrix obtained from K by omitting its last row by Ks .

Below, in Section 2.2, we shall relate the characteristic coefficient of the method, discussed in Section 1.1, to an
important coefficient introduced by Kraaijevanger in [22]. In the present Section 2.1, we define the latter coefficient
and list some of its properties.

The definition of Kraaijevanger’s coefficient involves the following condition, in which γ denotes a real variable:

(I + γKs) is invertible, γK(I + γKs)
−1 � 0, γK(I + γKs)

−1Es � Es+1. (2.1)



1678 L. Ferracina, M.N. Spijker / Applied Numerical Mathematics 58 (2008) 1675–1686
Here I denotes the s × s identity matrix, and Es,Es+1, respectively, stand for the s × 1 and the (s + 1) × 1 matrix,
with all entries equal to 1. The inequalities in (2.1) should be interpreted entry-wise; all inequalities for matrices
occurring below are to be interpreted in the same way.

Definition 2.1 (Kraaijevanger’s coefficient r(K)).

r(K) = sup
{
γ : γ � 0 and (2.1) holds

}
.

For completeness, we note that the original definition, given by Kraaijevanger [22], is slightly more complicated
than the above, and essentially amounts to

r(K) = sup
{
r: r ∈ R and (2.1) holds for all γ ∈ [0, r]}.

Moreover, Kraaijevanger [22] used the notation R(A,b), instead of r(K), but this difference is immaterial for our
discussion. The following theorem implies that the above two definitions of r(K) are equivalent:

Theorem 2.2 (Fulfillment of condition (2.1)). Let K be given and let γ be any finite value with 0 � γ � r(K)

(Definition 2.1). Then γ satisfies (2.1).

Theorem 2.2 can be viewed as a (somewhat stronger) version of earlier results about r(K) in the literature –
for related material, see Kraaijevanger [22, Lemma 4.4], Higueras [18, Proposition 2.11], Horváth [19, Theo-
rem 4]. Theorem 2.2 follows easily from a (more general) theorem given in Spijker [33, Theorem 2.2(ii) and
Section 3.2.1].

Clearly, we have always r(K) � 0. The subsequent theorem makes it quite easy to determine whether r(K) > 0 or
r(K) = 0.

Theorem 2.3 (Criterion for positivity of r(K)). We have r(K) > 0 if and only if : K � 0 and the following implication
is valid (for all i, j )

κij = 0 �⇒ κimκmj = 0 (for 1 � m � s). (2.2)

Proof. By Theorem 2.2, we have r(K) > 0 if and only if there is a γ0 > 0 such that (2.1) holds for all γ ∈ [0, γ0].
Therefore, in view of the first inequality in (2.1), we can assume with no loss of generality, that K � 0.

For γ > 0 sufficiently small, the matrix (I + γKs) is invertible and the second inequality in (2.1) is automatically
fulfilled. Therefore, we have r(K) > 0 if and only if there is a γ0 > 0 such that

(K − γKKs)

{ ∞∑
j=0

(γKs)
2j

}
= K(I + γKs)

−1 � 0
(
for all γ ∈ [0, γ0]

)
,

which is equivalent to the requirement that κij > 0 as soon as the entry in the i-th row and j -th column of the matrix
KKs is positive. This last requirement is equivalent to (2.2) (because K � 0). �

For theorems closely related to Theorem 2.3, see e.g. Kraaijevanger [22, Theorem 4.2], Higueras [17, Proposi-
tion 2.4], Spijker [33, Theorem 2.2(i)].

2.2. Relating the characteristic stepsize-coefficient to r(K)

We consider stepsize-coefficients c such that, for method (1.2), the following property is present:

Condition 0 < �t � c · τ0 implies strong stability, in the sense of (1.3),

whenever V is a vector space, ‖ · ‖ a convex function on V, and

F : V → V satisfies (1.4). (2.3)

It is easily verified that this property is independent of the value τ0: if c has property (2.3) using one particular value
τ0 > 0, then c will have the same property when using any other value, say τ ′ > 0.
0
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Clearly, if ĉ is the maximal stepsize-coefficient c with property (2.3), then ĉ equals the characteristic coefficient of
the RKM, discussed in Section 1.1.

Theorem 2.4 (Strong Stability of RKMs). Consider method (1.2), and given τ0 > 0.

(i) Let c � r(K). Then statement (2.3) is valid.
(ii) Assume method (1.2) is irreducible in the sense that the rows of the s × s matrix Ks are different from each other.

Then, conversely, statement (2.3) implies that c � r(K).

Note that any given RKM, violating the irreducibility assumption in (ii), produces approximations un which can
also be obtained from an irreducible method, with a smaller number of stages.

The theorem highlights the importance of r(K): it implies that for RKMs which are irreducible in the sense of (ii),
the characteristic coefficient equals r(K).

Statements (i), (ii) supplement related material in [16,17,21,8,9]. The irreducibility condition in (ii) is essentially
weaker than in these papers, whereas property (2.3) is stronger than in (some of) the papers. Theorem 2.4 follows
easily from (more general) results given in Spijker [33, Sections 3.1 and 3.2.1].

Since SDIRK methods automatically satisfy the irreducibility requirement occurring in the above statement (ii),
the above theorem yields immediately the following

Corollary 2.5 (Strong Stability of SDIRK methods). Consider an arbitrary SDIRK method with coefficient matrix
K = (κij ). Then the largest value c, for which (2.3) holds, is equal to r(K); i.e. the characteristic coefficient of the
method is equal to Kraaijevanger’s coefficient.

3. Optimal SDIRK methods

In the following, we denote by Ss,p the class of all s-stage SDIRK methods with order of accuracy at least p. We
consider the problem of determining a method in the class which is optimal, in that it has property (2.3) with a value c

which is maximal in Ss,p . We identify RKMs with their coefficient matrices K = (κi,j ), and denote the corresponding
characteristic coefficients, discussed in Sections 1.1, 2.2, by c(K). The following three remarks are basic for the rest
of Section 3.

(i) For any SDIRK method K , the computation of the characteristic coefficient c(K) can be based on the formula
c(K) = r(K) – see the above Corollary 2.5.

(ii) For any SDIRK method K of order p > 1, we have c(K) < ∞ – see Spijker [32], and e.g. Kraaijevanger [22,
Theorem 8.3].

(iii) The order of an s-stage SDIRK method cannot exceed s + 1 – see [25], and e.g. [26], [7, Theorem 3.5.11].

3.1. Optimal SDIRK methods of order p = 1

It is well known that the implicit Euler method K = (κij ), specified by s = 1 and κ1,1 = κ2,1 = 1, has order
p = 1 and characteristic coefficient c(K) = r(K) = ∞; see e.g. [22, Lemma 4.5]. Consequently, a search for optimal
methods in Ss,p with p = 1 is simple: the s-stage SDIRK method consisting of s consecutive applications of the
implicit Euler method, with timestep �t/s, has order 1 and c(K) = ∞. The coefficients of this SDIRK method satisfy
κij = 1/s (for 1 � j � i � s and for i = s + 1,1 � j � s).

3.2. Optimal SDIRK methods of order p = 2

3.2.1. Optimal method with s = 1 stage
It is well known that there is a unique SDIRK method K = (κij ) in S1,2, viz. the implicit midpoint rule. For this

method we have κ1,1 = 1/2, κ2,1 = 1, and one easily sees that c(K) = 2.
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3.2.2. Optimal method with s = 2 stages
It can be proved that, for the case (s,p) = (2,2), the method K with κ1,1 = κ2,2 = 1/4; κ2,1 = κ3,1 = κ3,2 = 1/2 is

optimal in Ss,p with regard to its value c(K), see [9, Section 4.3]. The corresponding characteristic coefficient equals
c(K) = 4.

3.2.3. Optimal methods with s � 3 stages
In view of the equality c(K) = r(K), we consider the maximization of r(K) over the classes Ss,p , with p = 2

and given s � 3. According to Definition 2.1, this maximum can be computed by performing an optimization, with
objective function γ and search variables κij , γ , under the constraints (2.1), supplemented by the order conditions
(see e.g. [13, Section IV.6, Table 6.1]).

We performed a numerical search along these lines (using MATLAB), and obtained methods K = (κij ) with
maximal c(K) in Ss,p . We found that κij and c(K) can be represented (up to all computed digits) by the following
formulas:

c(K) = 2s, and κij =

⎧⎪⎨⎪⎩
1
2s

if i = j, 1 � i � s,

1
s

if 1 � j < i � s + 1,

0 otherwise.

(3.1)

The formulas in (3.1) were obtained via a numerical search, which provides no formal proof of optimality. We are
thus led, in a natural way, to Conjecture 3.1, stated below. The conjecture is supported by the fact that the optimal
second order SDIRK methods with 1 and 2 stages, given above, nicely fulfill (3.1) with s = 1,2, respectively.

Conjecture 3.1. Let p = 2 and s � 3. Then the SDIRK method K = (κij ), defined by (3.1), is optimal, with respect
to c(K), in Ss,p .

3.3. Optimal SDIRK methods of order p = 3

3.3.1. Optimal method with s = 2 stages
There exist two different SDIRK methods K = (κij ) with s = 2 and p = 3, and explicit expressions for the co-

efficients κij are available – see e.g. [23, Table 1], [3, Section 347], [7, Section 3.5]. From these expressions, one
easily sees that just one of the two methods has a nonnegative coefficient matrix K (which is necessary in order

that c(K) > 0, see Theorem 2.3). For this method we have κ1,1 = κ2,2 = 3−√
3

6 , κ2,1 = 1√
3

, κ3,1 = κ3,2 = 1
2 , and the

corresponding characteristic coefficient equals c(K) = 1 + √
3 � 2.732 050 807 568.

3.3.2. Optimal methods with s � 3 stages
By a numerical search in Ss,3 (using MATLAB), similar to the search in Section 3.2, we obtained methods K with

maximal c(K). By trial and error, we found for these methods that (up to all computed digits) the following explicit
formulas are valid:

c(K) = s − 1 +
√

s2 − 1, and κij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

(
1 −

√
s−1
s+1

)
if i = j, 1 � i � s,

1√
s2−1

if 1 � j < i � s,

1
s

if i = s + 1, 1 � j � s,

0 otherwise.

(3.2)

Since the formulas (3.2) were obtained via numerical computations, we have again no formal proof of optimality. We
are led to Conjecture 3.2, stated below. The corollary is supported by the fact that the optimal method in S2,3, given
above, fulfills (3.2) with s = 2.

Conjecture 3.2. Let p = 3 and s � 3. Then the method K = (κij ) defined in (3.2) is optimal, with respect to c(K),
in Ss,p .
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3.4. Optimal SDIRK methods of order p = 4

3.4.1. Optimal method with s = 3 stages
There exist three SDIRK methods with 3 stages and order 4. Explicit expressions for the coefficients κij are

available – see e.g. [23, Table 1], [3, Section 347], [7, Section 3.5]. From these expressions, one easily sees that just
one of the three methods satisfies K � 0. For this method we have:

c(K) = 4ξ

4ξ2 − 6ξ + 1
, K =

⎛⎜⎜⎝
ξ 0 0

1
2 − ξ ξ 0

2ξ 1 − 4ξ ξ
1

6(2ξ−1)2
2(6ξ2−6ξ+1)

3(2ξ−1)2
1

6(2ξ−1)2

⎞⎟⎟⎠ , (3.3)

where ξ is the smallest solution of the equation ξ3 − 3
2ξ2 + 1

2ξ − 1
24 = 0. We have (up to the number of given digits)

ξ = 0.128 886 400 515 and c(K) = 1.758 770 483 143.

3.4.2. Optimal methods with s � 4 stages
By a numerical search, along similar lines as in Sections 3.2, 3.3, we obtained methods K with maximal c(K)

in Ss,4. We did not succeed in finding for these methods simple closed-form expressions such as (3.1), (3.2). Coeffi-
cients specifying the optimal methods K = (κij ), and corresponding characteristic coefficients c(K), are given below.
We display only the nonzero entries of the matrices K .

Method with 4 stages. The optimal method, in S4,4, has a characteristic coefficient c(K) = 4.208 135 414 418, and
its coefficient matrix K = (κij ) is as follows:

0.097961082941
0.262318069183 0.097961082941
0.230169419019 0.294466719347 0.097961082941
0.210562684389 0.269382888280 0.307008634881 0.097961082941
0.222119403264 0.282060762166 0.236881213175 0.258938621395

Method with 5 stages. The optimal method, in S5,4, has a characteristic coefficient c(K) = 5.747 429 371 524, and
its coefficient matrix K = (κij ) is as follows:

0.078752939968
0.222465723027 0.078752939968
0.203192361700 0.230847263068 0.078752939968
0.188022704389 0.191735630027 0.209922288451 0.078752939968
0.188025114093 0.191739898281 0.209907601860 0.252726086329 0.078752939968
0.192143833571 0.200935182974 0.205799262036 0.200553844640 0.200567876778

Method with 6 stages. The optimal method, in S6,4, has a characteristic coefficient c(K) = 7.549 977 007 094, and
its coefficient matrix K = (κij ) is as follows:

0.067410767219
0.194216850802 0.067410767219
0.194216850802 0.199861501713 0.067410767219
0.162188551749 0.166902343330 0.145120313717 0.067410767219
0.165176818500 0.169977460026 0.150227711763 0.181214258555 0.067410767219
0.165176818500 0.169977460026 0.150227711763 0.181214258555 0.199861501713 0.067410767219
0.168954170460 0.173864595628 0.156683775305 0.157643002581 0.173864725004 0.168989731022

Method with 7 stages. The optimal method, in S7,4, has a characteristic coefficient c(K) = 8.671 030 957 620, and
its coefficient matrix K = (κij ) is as follows:

0.056879041592
0.172205581756 0.056879041592
0.135485903539 0.135485903539 0.056879041592
0.133962606568 0.133962606568 0.170269437596 0.056879041592
0.133962606568 0.133962606568 0.170269437596 0.172205581756 0.056879041592
0.138004377067 0.133084723451 0.152274237527 0.154005757170 0.154005757170 0.056879041592
0.139433665640 0.134719607258 0.145910607076 0.147569765489 0.147569765489 0.165009008641 0.056879041592
0.138370770799 0.134572540279 0.150642940425 0.152355910489 0.152355910489 0.132951737506 0.138750190012
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Method with 8 stages The optimal method, in S8,4, has a characteristic coefficient c(K) = 10.269 965 214 352, and
its coefficient matrix K = (κij ) is as follows:

0.050353353407
0.147724666662 0.050353353407
0.114455029802 0.114455029802 0.050353353407
0.114147680771 0.114147680771 0.147327977820 0.050353353407
0.114163314686 0.114163314686 0.147259379853 0.147655883990 0.050353353407
0.114163314686 0.114163314686 0.147259379853 0.147655883990 0.147724666662 0.050353353407
0.118472990244 0.118472990244 0.128349529304 0.128695117609 0.128755067770 0.128755067770 0.050353353407
0.118472990244 0.118472990244 0.128349529304 0.128695117609 0.128755067770 0.128755067770 0.147724666662 0.050353353407
0.117592883046 0.117592883046 0.132211234288 0.132567220450 0.132628974356 0.132293123539 0.117556840638 0.117556840638

3.5. SDIRK methods of order p > 4

We have the following negative result.

Theorem 3.3. There exists no SDIRK method with positive characteristic coefficient and order of accuracy greater
than four.

Proof. Suppose K = (κij ) is a coefficient matrix specifying an SDIRK method with characteristic coefficient
c(K) > 0. In view of Corollary 2.5 and Theorem 2.3, we have for all i, j the inequality κij � 0. We put bj = κ(s+1),j

and define index sets M,N with M ∪ N = {1,2, . . . , s} by

bj > 0 (for j ∈ M) and bj = 0 (for j ∈ N).

Using Corollary 2.5 and Theorem 2.3 once more, it follows that implication (2.2) is valid. An application of (2.2),
with i = s + 1, shows that bm · κm,n = 0 for n ∈ N and 1 � m � s. Hence κm,n = 0 for m ∈ M,n ∈ N .

We delete the n-th row and n-th column of K (for all n ∈ N ), and denote the resulting matrix by K̂ . The latter matrix
specifies an SDIRK method with the property that all entries in the last row of its coefficient matrix are positive. Any
SDIRK method, with this property, has order of accuracy at most 4, see e.g. [7, Theorem 3.6.16] or [13, Section IV.13].

The proof of the theorem is completed by noting that the order of the original SDIRK method K is equal to the
order of the method given by K̂ . �

Results, related to Theorem 3.3, can be found e.g. in [7, Corollary 6.2.8], [22, Corollary 8.7].

3.6. Summary and discussion of the optimal SDIRK methods

Table 1 summarizes some results of the above search for optimal methods in Ss,p . It displays the characteristic
coefficients c(K) of optimal SDIRK methods K = (κij ) with s-stages and order p. The coefficients, for p � 2, which
are printed in italics, correspond to methods obtained by a numerical search and conjectured to be optimal.

The table clearly shows that, for given p > 1, the characteristic coefficients c(K) become larger when s increases.
A larger c(K) means that strong stability in the situation (1.4) can be guaranteed under a milder stepsize restric-
tion (1.5) (with c = c(K)).

Table 1
Characteristic coefficients c(K) of optimal methods K in Ss,p . Italic coeffi-
cients correspond to methods obtained by a numerical search

p = 1 p = 2 p = 3 p = 4

s = 1 ∞ 2 – –
s = 2 ∞ 4 2.732 –
s = 3 ∞ 6 4.828 1.759
s = 4 ∞ 8 6.873 4.208
s = 5 ∞ 10 8.899 5.747
s = 6 ∞ 12 10.916 7.550
s = 7 ∞ 14 12.928 8.671
s = 8 ∞ 16 14.937 10.270
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Table 2
Characteristic coefficients c(K) of optimal methods K in Es,p . Italic coeffi-
cients correspond to methods obtained by a numerical search

p = 1 p = 2 p = 3 p = 4

s = 1 1 – – –
s = 2 2 1 – –
s = 3 3 2 1 –
s = 4 4 3 2 0
s = 5 5 4 2.651 1.508
s = 6 6 5 3.518 2.295
s = 7 7 6 4.288 3.321
s = 8 8 7 5.107 4.146

Of course, a larger c(K) does not automatically imply a better overall efficiency in practice – because also the
computational labor per step and accuracy should be taken into account – cf. e.g. [34, Section 3], [8, Section 4.2] for
related considerations.

It may be natural to compare the coefficients in Table 1 with the maximal characteristic coefficient obtainable in the
class of s-stage p-th order explicit RKMs. We denote the last mentioned class by Es,p and the corresponding maximal
characteristic coefficient by es,p . It is known that es,p � s − p + 1 (for s � p � 1), whereas es,p = 0 (for p � 5), see
[22] and e.g. [8]. For p = 1, 2, and for p = 3, s = 3, 4, the above upperbound for es,p becomes an equality. Moreover,
for p = 3,4 and various s � 5, values for es,p were found that are not much smaller than s − p + 1, see the above
papers and [34,35,28]. For convenience, some values es,p from the literature are displayed in Table 2.

It follows that, for given s,p, the characteristic coefficient in Table 1 is larger than es,p , certainly, but it is not
evident that the difference is so big that the optimal SDIRK methods, with p � 2, can beat in practice the explicit
optimal methods. In particular, the question poses itself of whether the size of the coefficients in Table 1 offsets the
amount of work that is necessary, for SDIRK methods, to solve the s (nonlinear) equations (1.2a).

The size of the coefficients c(K), on which we have been focusing, is a theoretical aid to assess a-priori the be-
havior of RKMs, for nonlinear problems which can be modeled via assumption (1.4). Therefore, extensive numerical
experiments may be essential for supplementing this assessment.

Numerical experiments on any large scale are beyond the scope of the present paper. In the next section a small
experiment is performed, just to obtain a first idea about the relation between Table 1 and the actual numerical behavior
of optimal SDIRK methods.

4. A numerical experiment

In the following we denote by Ks,p the (coefficient matrices of the) optimal methods in Ss,p which are specified in
Section 3. We consider the numerical behavior of the methods, with s = p − 1,p,p + 1, for a nonlinear test equation.
Our focus is on the TVD property, mentioned in Section 1.1, rather than on a detailed accuracy study.

We deal with the numerical solution of a hyperbolic equation, the 1-dimensional Buckley–Leverett equation, de-
fined by

∂

∂t
u(x, t) + ∂

∂x
Φ

(
u(x, t)

) = 0, (4.1)

with Φ(v) = 3v2

3v2+(1−v)2 ; see e.g. [24]. We consider this equation for 0 � x � 1, 0 � t � 1/8, with (periodic) boundary

condition u(0, t) = u(1, t) and initial condition

u(x,0) =
{

0 for 0 < x � 1
2 ,

1
2 for 1

2 < x � 1.

We semi-discretize the problem, using a uniform grid with mesh-points xj = j�x, where j = 1,2, . . . ,N and
�x = 1/N,N = 100. Eq. (4.1) is approximated by the system of ordinary differential equations

U ′
j (t) = 1 (

Φ
(
U

j− 1 (t)
) − Φ

(
U

j+ 1 (t)
))

(j = 1,2, . . . ,N),

�x 2 2
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Fig. 1. The ratio μ(�t) vs. the stepsize �t .

where Uj(t) is to approximate u(xj , t). Following [20, III, Section 1], we define

U
j+ 1

2
= Uj + 1

2
ϕ(θj )(Uj+1 − Uj ),

where ϕ(θ) is a (limiter) function due to Koren – see [20] – defined by

ϕ(θ) = max

(
0,min

(
2,

2

3
+ 1

3
θ,2θ

))
,

and

θj = Uj − Uj−1

Uj+1 − Uj

.

In line with the periodicity of the boundary condition, we use the convention Up = Uq if p ≡ q (mod N ). We thus
arrive at a system of N = 100 ordinary differential equations that can be written in the form d

dt
U(t) = F(U(t)).

We define u0 to be the vector in R
N,N = 100, with components u0,j = 0 (for 1 � j � 50), u0,j = 1/2 (for

51 � j � 100). We solved the resulting initial value problem, of the form (1.1), by the explicit Euler method and by
the optimal methods Ks,p mentioned above.
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In Fig. 1, the maximal ratio of the TV-seminorm ‖y‖T V = ∑N
j=1 |ηj − ηj−1| (where y = (η1, . . . , ηN), η0 = ηN )

of two consecutive numerical approximations, in the time interval [0,1/8], is plotted as a function of the stepsize; i.e,
the quantity

μ(�t) = max

{ ‖un‖T V

‖un−1‖T V

: n � 1 with n�t � 1/8

}
(4.2)

is plotted as a function of �t . Clearly, the value μ(�t) = 1 corresponds to the situation where ‖un‖T V � ‖un−1‖T V

for all n � 1, n�t � 1/8, i.e. the method is total-variation-diminishing on all the interval [0,1/8]. In Fig. 1, the
notation SDIRK(s,p) (for s = p − 1,p,p + 1) refers to the optimal method Ks,p .

We found that the explicit Euler method is TVD for 0 < �t � τ � 0.0025. Furthermore, the methods Ks,p are
TVD for 0 < �t � cs,p · τ , where

c1,2 � 2.00, c2,3 � 3.68, c3,4 � 4.24,

c2,2 � 4.08, c3,3 � 5.36, c4,4 � 5.04,

c3,2 � 6.08, c4,3 � 7.12, c5,4 � 6.48.

One may compare these numerically observed coefficients cs,p to the maximal coefficients c for which the meth-
ods Ks,p satisfy (2.3). The latter coefficients equal c(Ks,p) and are displayed in Table 1; from the table we have
c(Ks+1,p) > c(Ks,p) > 1.

The majority of the coefficients cs,p don’t deviate substantially from the corresponding coefficients c(Ks,p); and the
above inequalities for the latter coefficients are nicely reflected in the numerical experiments: we have also cs+1,p >

cs,p > 1.
We think the above gives a nice impression of the relation between Table 1 and the TVD properties of the methods

Ks,p in connection to Eq. (4.1).

5. Conclusions

We have determined singly-diagonally-implicit Runge–Kutta (SDIRK) methods which, for given number of stages
s and order p, are optimal in that the stepsize conditions, guaranteeing strong stability (SS), are as little restrictive as
possible. Some methods are proved to optimal, viz. for p = 1, s � 1 and for the following pairs (s,p): (1,2); (2,2);
(2,3); (3,4) (see Sections 3.1–3.4). Some other methods, obtained by a numerical search, are conjectured to be
optimal, viz. for p = 2, s � 3; for p = 3, s � 3; and for p = 4 � s � 8 (see Sections 3.2–3.4, notably Conjectures 3.1,
3.2).

The order p of any strongly stable SDIRK method is proved to satisfy the bound p � 4 (see Section 3.5).
We have compared the theoretical SS properties of the optimal SDIRK methods, determined in the present paper,

to those of the optimal explicit Runge–Kutta methods given in the literature (see Section 3.6).
We have performed numerical experiments, in which optimal SDIRK methods are applied for solving a nonlinear

hyperbolic test equation, the 1-dimensional Buckley–Leverett equation. The theoretical SS properties are compared
to the actual total-variation-diminishing properties of the methods (see Section 4).
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