
Computing optimal monotonicity-preserving

Runge-Kutta methods

L. Ferracina∗ and M. N. Spijker†

April 7, 2005

Abstract

This paper deals with the numerical solution of initial value problems, for systems of
ordinary differential equations, by Runge-Kutta methods which are monotonicity pre-
serving - also called strong stability preserving (SSP). In the context of solving partial
differential equations by the method of lines, Shu & Osher (1988) introduced represen-
tations of explicit Runge-Kutta methods which lead to stepsize conditions under which
monotonicity is preserved. Recently, a numerical procedure, based on such representa-
tions, was employed for finding explicit Runge-Kutta methods which are optimal with
respect to the above stepsize conditions; see Spiteri & Ruuth (2002, 2003), Ruuth &
Spiteri (2004), Ruuth (2004).

In the present paper we continue the analysis, of Shu-Osher representations, given
earlier in Higueras (2003, 2004), Ferracina & Spijker (2005). In this way we arrive
naturally at a generalized and improved version of the numerical procedure mentioned
above. Our procedure is, unlike the earlier one, also relevant to Runge-Kutta methods
which are implicit. We illustrate our procedure in a numerical search for some optimal
methods within the class of singly-diagonally-implicit Runge-Kutta methods, and we
exemplify the monotonicity properties of these optimal methods in the solution of the
Buckley-Leverett equation. Finally, we formulate some open questions and conjectures.

Key words: initial value problem, Shu-Osher representation, total-variation-diminishing (TVD),

monotonicity, strong-stability-preserving (SSP), singly-diagonally-implicit Runge-Kutta formula (SDIRK).

1 Introduction.

1.1 Monotonic Runge-Kutta processes.

In this paper we deal with the numerical solution of initial value problems, for systems of
ordinary differential equations, which can be written in the form

(1.1)
d

dt
U(t) = F (U(t)) (t ≥ 0), U(0) = u0.

The general Runge-Kutta method, applied to problem (1.1), provides us with numerical
approximations un of U(n∆t), where ∆t denotes a positive time step and n = 1, 2, 3, ...; cf.

∗Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands. E-mail:

ferra@math.leidenuniv.nl.
†Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands. E-mail:

spijker@math.leidenuniv.nl

1

e.g. Butcher (1987), Hairer, Nørsett & Wanner (1993), Hundsdorfer & Verwer (2003). The
approximations un can be defined in terms of un−1 by the relations

yi = un−1 + ∆t

s
∑

j=1

κijF (yj) (1 ≤ i ≤ s + 1),(1.2.a)

un = ys+1.(1.2.b)

Here κij are real parameters, specifying the Runge-Kutta method, and yi (1 ≤ i ≤ s) are
intermediate approximations needed for computing un = ys+1 from un−1. As usual, we call
the Runge-Kutta method explicit if κij = 0 (for 1 ≤ i ≤ j ≤ s), and implicit otherwise.

In the literature, much attention has been paid to solving (1.1) by processes (1.2) having
a property which is called monotonicity, or strong stability. There are a number of closely
related monotonicity concepts; see e.g. Hundsdorfer & Ruuth (2003), Hundsdorfer & Verwer
(2003), Gottlieb, Shu & Tadmor (2001), Shu (2002), Shu & Osher (1988), Spiteri & Ruuth
(2002).

In this paper we shall deal with a quite general monotonicity concept, and we shall study
the problem of finding Runge-Kutta methods which have optimal properties regarding this
kind of monotonicity. As we want to address this problem in a general setting, we assume
F to be a mapping from an arbitrary real vector space V into itself and ‖.‖ to be a real
convex function on V (i.e. ‖v‖ ∈ R and ‖λv+(1−λ)w‖ ≤ λ‖v‖+(1−λ)‖w‖ for all v, w ∈ V

and 0 ≤ λ ≤ 1). We will deal with processes (1.2) which are monotonic in the sense that
the vectors un ∈ V computed from un−1 ∈ V, via (1.2), satisfy

(1.3) ‖un‖ ≤ ‖un−1‖.

In order to illustrate the general property (1.3), we consider the numerical solution of a
Cauchy problem for the hyperbolic partial differential equation,

(1.4)
∂

∂t
u(x, t) +

∂

∂x
Φ(u(x, t)) = 0,

where t ≥ 0, −∞ < x < ∞. Here Φ stands for a given (possibly nonlinear) scalar function,
so that (1.4) is a simple instance of a conservation law, cf., e.g., Laney (1998), LeVeque
(2002). Suppose (1.1) originates from a (method of lines) semi-discretization of (1.4). In
this situation, the function F occurring in (1.1) can be regarded as a function from R∞ =
{y : y = (..., η−1, η0, η1, ...) with ηj ∈ R for j = 0,±1,±2, ...} into itself; the actual function
values F (y) depend on the given Φ as well as on the process of semi-discretization being
used - see loc. cit.. Since d

dt
U(t) = F (U(t)) now stands for a semi-discrete version of

the conservation law (1.4), it is desirable that the fully discrete process (consisting of an
application of (1.2) to (1.1)) be monotonic in the sense of (1.3), where ‖.‖ denotes the
total-variation seminorm

(1.5) ‖y‖TV =
+∞
∑

j=−∞
|ηj − ηj−1| (for y ∈ R

∞ with components ηj).

With this seminorm, the monotonicity property (1.3) reduces to the so-called total-variation-
diminishing (TVD) property. For an explanation of the importance of the last property,
as well as for further examples, where (1.3) is a desirable property or a natural demand,

2

we refer to Harten (1983), Laney (1998), LeVeque (2002), Hundsdorfer & Ruuth (2003),
Hundsdorfer & Verwer (2003).

In order to place the study, to be carried out in the present paper, in the right context,
we shall first review, in Section 1.2, an approach of Shu & Osher (1988) to proving the
general property (1.3) for certain explicit Runge-Kutta methods. Next, in Section 1.3, we
shall briefly review a numerical procedure used in Spiteri & Ruuth (2002, 2003), Ruuth &
Spiteri (2004), Ruuth (2004) for finding explicit Runge-Kutta methods which are optimal
with respect to stepsize conditions guaranteeing (1.3). Finally, in Section 1.4, we shall
outline the study to be presented in the rest of our paper.

1.2 The Shu-Osher representation.

By Shu & Osher (1988) (see also Shu (1988)) a representation of explicit Runge-Kutta
methods (1.2) was introduced which is very useful for proving property (1.3). In order to
describe this representation, we consider an arbitrary explicit Runge-Kutta method (1.2)
specified by coefficients κij . We assume that λij (for 1 ≤ j < i ≤ s + 1) are any real
parameters with

(1.6) λij ≥ 0, λi1 + λi2 + ... + λi,i−1 = 1 (1 ≤ j < i ≤ s + 1),

and we define corresponding coefficients µij by

µij = κij −
i−1
∑

l=j+1

λilκlj (1 ≤ j < i ≤ s + 1)(1.7)

(where the last sum should be interpreted as 0, when j = i − 1).

Statement (i) of Theorem 1.1, to be given below, tells us that the relations (1.2) can be
rewritten in the form

y1 = un−1,

yi =
i−1
∑

j=1

[λij yj + ∆t · µijF (yj)] (2 ≤ i ≤ s + 1),(1.8)

un = ys+1.

We shall refer to (1.8) as a Shu-Osher representation of the explicit Runge-Kutta method
(1.2).

The representation (1.8) is very relevant in the situation where, for some τ0 > 0,

(1.9) ‖v + τ0 F (v)‖ ≤ ‖v‖ (for all v ∈ V).

Clearly, in case (1.1) results from applying the method of lines to a given partial differential
equation, (1.9) amounts to a condition on the actual manner in which the semi-discretization
has been performed. In general, (1.9) can be interpreted as monotonicity of the forward
Euler process with stepsize τ0, cf. e.g. Hundsdorfer & Verwer (2003). We also note that, for
0 ≤ τ < τ0, condition (1.9) implies ‖v + τF (v)‖ ≤ ‖(τ/τ0)(v + τ0F (v))+ (1− τ/τ0)v‖ ≤ ‖v‖
– i.e. the Euler process is still monotonic with any stepsize τ ∈ [0, τ0).

3

Assume (1.9). Then, for 2 ≤ i ≤ s + 1, the vectors yi in (1.8) can be rewritten as
convex combinations of Euler steps with stepsizes τ = ∆t(µij/λij). From this observation,
it follows easily that (1.3) is now valid, under a stepsize restriction of the form

(1.10) 0 < ∆t ≤ c · τ0,

where c = minij γij , with γij = λij/µij (if µij ≥ 0), γij = 0 (if µij < 0) – here, as well as
below, we use the convention λ/µ = ∞ for λ ≥ 0, µ = 0.

Clearly, in order that c > 0, it is necessary that all µij are nonnegative. Using an idea
of Shu (1988), Shu & Osher (1988), one can avoid this condition on µij in certain cases.
Suppose, for instance, that d

dt
U(t) = F (U(t)) approximates (1.4); then, for µij < 0, the

quantity µijF (yj) in (1.8) should be replaced by µijF̃ (yj), where F̃ approximates − ∂
∂x

Φ to
the same order of accuracy as F , but satisfies (instead of (1.9))

(1.11) ‖v − τ0 F̃ (v)‖ ≤ ‖v‖ (for all v ∈ V).

E.g., if ∂
∂x

Φ(u(x, t)) = ∂
∂x

u(x, t), Fi(y) = (ηi−1 − ηi)/∆x, ‖.‖ = ‖.‖TV and τ0 = 1/∆x, then

F̃i(y) = (ηi − ηi+1)/∆x would do. Clearly, after such a (partial) replacement of F by F̃ ,
property (1.3) is still valid under a stepsize condition of the form (1.10), with

(1.12) c = min
ij

λij

|µij |
.

If every coefficient µij is nonnegative, then the number of function evaluations, in process
(1.8), is equal to the number of stages, s. However, if both F (yj) and F̃ (yj) were required
for some j, then the number of function evaluations, needed for computing un from un−1,
would be greater than s. Therefore, in order to avoid this unfavourable situation, it is
natural to demand that, for each given j, all non-zero coefficients µij (with j < i ≤ s + 1)
have the same sign; cf. e.g. Ruuth & Spiteri (2004). Accordingly, we assume that, for
1 ≤ j ≤ s, sign indicators σj = ±1 can be associated to the coefficients µij such that

(1.13) µij ≥ 0 (whenever σj = 1), and µij ≤ 0 (whenever σj = −1).

For completeness we note that one can rewrite any process (1.8), for which no σj exist
satisfying (1.13), in the form of a different Shu-Osher process, with more stages, satisfying
(1.13).

The following theorem summarizes our above discussion of the Shu-Osher process (1.8).

Theorem 1.1 (Shu and Osher).

(i) Consider an explicit Runge-Kutta method (1.2) specified by coefficients κij, and as-
sume (1.6) and (1.7). Then processes (1.2) and (1.8) are equivalent.

(ii) Assume (1.6), (1.13) and let c be defined by (1.12). Consider any vector space V

and convex function ‖.‖ on V; assume (1.9), (1.11). Then stepsize condition (1.10)
guarantees property (1.3), for process (1.8) where F (yj) is replaced throughout by
F̃ (yj) when σj = −1.

4

The above propositions (i) and (ii) are essentially due to Shu & Osher (1988) - in that
paper the starting-point was just a slightly stronger assumption, than above, regarding
‖.‖, F and F̃ ; see loc. cit.

Clearly, if for a given Runge-Kutta method a representation (1.8) exists such that the
assumptions of Theorem 1.1 are fulfilled with c > 0, then the Runge-Kutta process maintains
monotonicity of the Euler processes in (1.9), (1.11), under the stepsize restriction (1.10).
For that reason, Runge-Kutta methods for which such a positive c exists, may be called
monotonicity-preserving or strong-stability-preserving – cf. Gottlieb, Shu & Tadmor (2001),
Ferracina & Spijker (2004).

For future reference, we note that the implementation of process (1.8) involving F and
F̃ , as discussed above, can be written in the form

y1 = un−1,

yi =

i−1
∑

j=1

[λij yj + ∆t · µijfj(yj)] (2 ≤ i ≤ s + 1),(1.14)

un = ys+1,

where fj(yj) = F (yj) for σj = 1, and fj(yj) = F̃ (yj) for σj = −1. In view of (1.9), (1.11),
these functions fj satisfy

(1.15) ‖v + τ0 σjfj(v)‖ ≤ ‖v‖ (1 ≤ j ≤ s, v ∈ V).

1.3 A numerical procedure used by Ruuth & Spiteri.

Below we denote by Es,p the class of all explicit s-stage Runge-Kutta methods with (clas-
sical) order of accuracy at least p.

Clearly, it would be awkward if the coefficient c, occurring in Theorem 1.1 (ii), were zero
or so small that (1.10) reduces to a stepsize restriction which is to severe for any practical
purposes – in fact, the less restrictions on ∆t the better. Accordingly, for given s and p,
much attention as been paid in the literature to determining Shu-Osher processes (1.8),
(1.13) in Es,p which are optimal with regard to the size of c. Extensive numerical searches
in Es,p for optimal Shu-Osher processes (1.8), (1.13), were recently carried out in Ruuth &
Spiteri (2004), Spiteri & Ruuth (2003), Ruuth (2004).

For given s and p, the numerical searches carried out in the last three papers, are
essentially based on the following optimization problem (1.16), in which λij, µij, γ are the
independent variables and f(λij, µij , γ) = γ is the objective function.

maximize γ, subject to the following constraints:(1.16.a)

λij − γ |µij | ≥ 0 (1 ≤ j < i ≤ s + 1);(1.16.b)

λij satisfy (1.6), and there are σj = ±1 such that (1.13) holds;(1.16.c)

the coefficients κij , satisfying (1.7), specify a Runge-Kutta
method (1.2) belonging to class Es,p.

(1.16.d)

Clearly, the variable γ in (1.16) corresponds to c in (1.12), and parameters λij , µij , γ solving
the optimization problem (1.16) yield a Shu-Osher process in Es,p which is optimal in the
sense of c, (1.12).

5

For completeness we note that, also for the special case where all σj in (1.13) are required
to satisfy σj = 1, optimal Shu-Osher processes (1.8) were determined in Es,p – either by
clever ad hoc arguments, or by numerical computations based on an earlier version of (1.16);
see Shu & Osher (1988), Spiteri & Ruuth (2002).

Problem (1.16), as well as the earlier version just mentioned, were solved numerically
by Ruuth and Spiteri – initially using Matlab’s Optimization Toolbox, subsequently with
the optimization software package BARON; see Ruuth & Spiteri (2004), Spiteri & Ruuth
(2002, 2003), Ruuth (2004) and references therein. In this way optimal methods were found
in Es,p, for 1 ≤ s ≤ 10, 1 ≤ p ≤ 5.

1.4 Outline of the rest of the paper

Various generalizations and refinements of Theorem 1.1 were given recently, notably in
Higueras (2003, 2004), Ferracina & Spijker (2004, 2005). In Section 2 we shall give a
concise review, and an extension, of some of these results.

In Section 3, we shall use the material of Section 2 so as to arrive at a generalized and
improved version of Ruuth & Spiteri’s approach (1.16) to finding optimal methods.

Our approach is, unlike (1.16), not restricted to explicit methods. Accordingly, in
Section 4, we shall illustrate our new version of (1.16) in a numerical search for some optimal
methods within the important class of singly-diagonally-implicit Runge-Kutta (SDIRK)
methods. In this way we shall arrive at optimal s-stage methods of orders 2, and 3.

In Section 5, we shall exemplify the preceding material with a simple numerical exper-
iment in which various optimal SDIRK methods are applied to a scalar conservation law,
the 1-dimensional Buckley-Leverett equation.

The material of Sections 4 and 5 leads to some conjectures and open questions which
will be formulated in our last section, Section 6.

2 An extension and analysis of the Shu-Osher representation.

2.1 A generalization of Theorem 1.1.

As in the previous section, V denotes an arbitrary real vector space. Furthermore, fj(v)
denote given functions, defined for all v ∈ V, with values in V. We shall deal with the
following general process:

yi =

(

1 −
s
∑

j=1

λij

)

un−1 +
s
∑

j=1

[λij yj + ∆t · µijfj(yj)] (1 ≤ i ≤ s + 1),(2.1.a)

un = ys+1.(2.1.b)

Here λij, µij denote arbitrary real coefficients. Clearly, this general process reduces to (1.14)
in case µij = λij = 0 (for 1 ≤ i ≤ j ≤ s),

∑s
j=1 λij = 1 (for 2 ≤ i ≤ s + 1).

Along with (2.1), we consider the following generalization of (1.2):

yi = un−1 + ∆t
s
∑

j=1

κijfj(yj) (1 ≤ i ≤ s + 1),(2.2.a)

un = ys+1.(2.2.b)

6

We define the (s + 1) × s coefficient matrices K, L, M as

(2.3) K = (κij), L = (λij), M = (µij),

so that the numerical methods (2.1) and (2.2), respectively, can be identified with the pair
(L,M) and the matrix K.

Below we shall relate (2.1) to (2.2). We shall denote the s× s identity matrix by I, and
we shall use the following definitions and assumptions:

K0 =







κ11 . . . κ1s

...
...

κs1 . . . λss






, L0 =







λ11 . . . λ1s

...
...

λs1 . . . λss






, M0 =







µ11 . . . µ1s

...
...

µs1 . . . µss






,(2.4)

M = K − LK0,(2.5)

I − L0 is invertible.(2.6)

Clearly, (2.5) is a straightforward generalization of (1.7); and (2.6) is automatically
fulfilled if (2.1) stands for (1.14).

We shall deal with monotonicity of process (2.1), under the following generalized version
of condition (1.6):

(2.7) L ≥ 0, Les ≤ es+1.

Here, and in the following, em stands for the column vector in R
m with all components equal

to 1 (for m = s, s+1). Furthermore, the first inequality in (2.7) should be interpreted entry-
wise, whereas the second inequality is to be interpreted component-wise. All inequalities
between matrices or vectors, to be stated below, should be interpreted in the same way.

In addition to (2.7), we shall assume that sign indicators σj = ±1 can be adjoined to
the columns of M , such that

(2.8) µij ≥ 0 (for 1 ≤ i ≤ s + 1 and σj = 1), µij ≤ 0 (for 1 ≤ i ≤ s + 1 and σj = −1).

For arbitrary (s + 1) × s matrices L = (λij), M = (µij), we define

(2.9) c(L,M) = min{γij : 1 ≤ i ≤ s + 1, 1 ≤ j ≤ s}, γij =







λij/µij if µij > 0,
∞ if µij = 0,
0 if µij < 0,

and we put

(2.10) |M | = (|µij |).

The following theorem can be viewed as an extension, of the original Shu-Osher Theorem
1.1, to the general processes (2.1), (2.2).

Theorem 2.1. With the notations (2.3), (2.4), the following statements are valid.

(I) Assume (2.5), (2.6). Then the general processes (2.1) and (2.2) are equivalent.

(II) Assume (2.6), (2.7), (2.8). Let c = c(L, |M |) – see (2.9), (2.10). Then, for any
vector space V and convex function ‖.‖ on V, conditions (1.10), (1.15) guarantee the
monotonicity property (1.3), whenever un−1, un, yi satisfy (2.1).

7

In view of Theorems 1.1, 2.1, we shall call any process (2.1), satisfying (2.5), (2.6), (2.7),
a generalized Shu-Osher representation of the Runge-Kutta process (2.2). From Theorem
2.1, we immediately obtain the following corollary relevant to the Runge-Kutta process
(2.2):

Corollary 2.2. Assume (2.5), (2.6), (2.7), (2.8), and let c = c(L, |M |). Then for any vector
space V and convex function ‖.‖ on V, conditions (1.10), (1.15) guarantee the monotonicity
property (1.3), whenever un−1, un, yi satisfy the Runge-Kutta relations (2.2).

Remark 2.3.
(a) Assume (2.5), (2.6), (2.7), (2.8). Let F, F̃ be as in (1.9), (1.11) and consider the

Runge-Kutta process (2.2) with fj = F (if σj = 1), fj = F̃ (if σj = −1). From Corollary 2.2
we easily conclude that the stepsize condition 0 ≤ ∆t ≤ c(L, |M |) · τ0 guarantees property
(1.3), whenever un−1, un, yi satisfy (2.2).

(b) Runge-Kutta procedures of the form (2.2) occur also very naturally in the solution
of nonautonomous equations U ′(t) = F (t, U(t)); notably with fj(v) = F (τj, v), τj =
[(n − 1 + γj)]∆t, γj =

∑s
k=1 κjk – see e.g. Butcher (1987), Hairer, Nørset & Wanner

(1993), Hundsdorfer & Verwer (2003). Accordingly, the above corollary (with all σj = 1)
is highly relevant to establishing monotonicity for such Runge-Kutta procedures: assuming
that ‖v + τ0 F (τj, v)‖ ≤ ‖v‖ (for 1 ≤ j ≤ s and v ∈ V), one arrives at monotonicity of the
Runge-Kutta process, under the stepsize condition 0 ≤ ∆t ≤ c(L,M) · τ0.

(c) Consider a Runge-Kutta method of the form (1.2), and assume that matrices L,M ,
satisfying (2.5) – (2.8) exist, with c(L, |M |) > 0. Then, in view of Remark 2.3 (a), and in
line with the terminology in Section 1.2, we will say that the Runge-Kutta method under
consideration is monotonicity-preserving.

We note that Theorem 2.1 can be viewed as an extension of conclusions, regarding
process (2.1), formulated in the recent literature. The equivalence of (2.1) and (2.2), in the
special situation where fj = F (1 ≤ j ≤ s), as well as the monotonicity of (2.1) when
fj = F (for σj = 1), fj = F̃ (for σj = −1), were treated earlier – cf. Higueras (2003,
2004), Ferracina & Spijker (2005). Although Theorem 2.1 covers situations which were not
considered in the above papers, its proof can easily be given by arguments which are almost
literally the same as in these papers. Therefore, we refer the reader for the proof of Theorem
2.1 to loc. cit.

2.2 The maximal size of c(L, |M |).

Let a Runge-Kutta method, with coefficient matrix K, be given. For any matrices L, M
as in Corollary 2.2, the coefficient c = c(L, |M |) yields a stepsize condition (1.10) which
can guarantee monotonicity for the Runge-Kutta process – cf. Corollary 2.2, Remark 2.3
(a). Consequently, the larger c(L, |M |) the better. The natural question thus arises, for the
given matrix K, what is the maximal size of c(L, |M |). Theorem 2.6, below, will specify
this maximal size in terms of the Runge-Kutta matrix K.

In Theorem 2.6, a coefficient introduced by Kraaijevanger (1991) will play a prominent
part. In defining this coefficient, we deal with K, K0 as in (2.3), (2.4) and we consider, for
real γ, the following conditions:

(I + γK0) is invertible, γK(I + γK0)
−1 ≥ 0, γK(I + γK0)

−1es ≤ es+1.(2.11)

8

Definition 2.4 (Kraaijevanger’s coefficient). For arbitrary (s + 1) × s matrices K, we
define

R(K) = sup{γ : γ ≥ 0 and (2.11) holds}.

For completeness, we note that the original definition, given by Kraaijevanger (1991), is
slightly more complicated and essentially amounts to

R(K) = sup{r : r ∈ R and (2.11) holds for all γ ∈ [0, r]}.

(Moreover, Kraaijevanger (1991) used the notation R(A, b), instead of R(K), but this dif-
ference is immaterial for our discussion.) The following theorem implies that the above two
definitions of R(K) are equivalent:

Theorem 2.5. Let K be given and let γ be any finite value with 0 ≤ γ ≤ R(K) (Definition
(2.4)). Then γ satisfies (2.11).

Theorem 2.5 can be viewed as a (somewhat stronger) version of earlier results in the
literature – for related material, see Kraaijevanger (1991, Lemma 4.4), Higueras (2004,
Proposition 2.11), Horváth (1998, Theorem 4).

In Section 2.3, we shall give an integrated proof of Theorem 2.5 and Theorem 2.6; the
former theorem will be used in our proof of the latter.

In Theorem 2.6 we shall deal with coefficient matrices K = (κij) satisfying

(2.12) κij ≥ 0 (for 1 ≤ i ≤ s+1 and σj = 1), κij ≤ 0 (for 1 ≤ i ≤ s+1 and σj = −1).

Theorem 2.6. Let K = (κij) and σj = ±1 (1 ≤ j ≤ s) be given. Then there exist L,M
satisfying (2.5) – (2.8) if and only if K satisfies (2.12). Furthermore, if (2.12) is fulfilled,
the following three statements are valid.

(a) We have sup c(L, |M |) = R(|K|), where the supremum is over all pairs (L,M)
satisfying (2.5) – (2.8).

(b) We also have sup c(L, |M |) = R(|K|), where the supremum is only over all pairs
(L,M) satisfying (2.5) – (2.8), with L = γ |M |, γ ≥ 0.

(c) If R(|K|) < ∞, then the suprema in Statements (a), (b) are maxima.

Theorem 2.6 combines and extends various results given earlier in the literature, see
Higueras (2003, 2004), Ferracina & Spijker (2005).

2.3 Proof of Theorems 2.5, 2.6.

Our proof below, of Theorems 2.5, 2.6, will be based on the following lemma, which can
be viewed as an extension of related results in the literature; see Higueras (2003, 2004),
Ferracina & Spijker (2005).

Lemma 2.7. Let K be a given (s +1)× s matrix and γ ≥ 0. Then Statements (a), (b) are
valid.

(a) Suppose L,M are (s+1)×s matrices, with L ≥ γM ≥ 0, satisfying (2.5), (2.6), (2.7).
Then K and γ satisfy (2.11).

9

(b) Suppose, conversely, that (2.11) is fulfilled. Then there exist matrices L,M , with
L = γM ≥ 0, satisfying (2.5), (2.6), (2.7).

Proof. 1. Before going into the actual proof, we assume (2.6), (2.7) and consider an arbitrary
s × s matrix E0, with

(2.13) 0 ≤ E0 ≤ L0.

We shall prove that

(2.14) I − E0 is invertible, with (I − E0)
−1 ≥ I.

From (2.13) we conclude that the spectral radius of E0 does not exceed the spectral
radius, say r, of L0; see, e.g., Horn & Johson (1985, Section 8.1). From L0 ≥ 0, L0 es ≤ es

we see that r ≤ 1. Since I − L0 is invertible, it follows – e.g. from a well known corollary
to Perron’s theorem, see Horn & Johson (1985, Section 8.3) – that r < 1. Consequently,
the spectral radius of E0 is less than 1. Hence, I − E0 is invertible, with (I − E0)

−1 =
I + E0 + (E0)

2 + ... ≥ I, i.e. (2.14).
2. Assume (2.5), (2.6), (2.7) and L ≥ γM ≥ 0. In order to prove (2.11), we define

E = L − γM, E0 = L0 − γM0. Note that, with this definition, (2.13) is fulfilled, so that
(2.14) is valid as well.

From (2.5) we obtain γK0 = (I − L0)
−1(γM0) = (I − L0)

−1(L0 − E0), and therefore
γK0 = −I + (I − L0)

−1(I − E0). Hence

(2.15.a) I + γK0 is invertible and (I + γK0)
−1 = (I − E0)

−1(I − L0).

Since γK = γM + L(γK0) = (L − E) + L(γK0), we find, by using our last expression for
γK0, that γK = −E + L(I − L0)

−1(I − E0). Combining this equality with (3.4), there
follows

(2.15.b) γK(I + γK0)
−1 = L − E(I − E0)

−1(I − L0).

The right-hand member of (3.5) is easily seen to be equal to (L−E)+E(I−E0)
−1(L0−

E0) ≥ 0. This implies the first inequality in (2.11). Furthermore, when we premultiply the
vector es by the right-hand member of (3.5), we obtain the vector Les − E(I − E0)

−1(I −
L0)es ≤ Les ≤ es+1. Consequently, the second inequality in (2.11) is fulfilled as well –
which completes the proof of Part (a) of the lemma.

3. In order to prove Part (b) of the lemma, we assume (2.11) and we define M =
K(I + γK0)

−1, L = γM . Clearly, (2.7) is fulfilled. Moreover I − L0 = (I + γK0)
−1, which

proves (2.6). Finally, a short calculation shows that (2.5) is fulfilled as well. �

Proof of Theorem 2.5.
First suppose 0 ≤ γ < R(K). Choose γ ′ > γ such that γ ′ satisfies (2.11). Applying Lemma
2.7 (b) to γ ′, it follows that L,M exist satisfying (2.5), (2.6), (2.7) with L = γ ′M ≥ γM ≥ 0.
An application of Lemma 2.7 (a) proves that γ satisfies (2.11).

Next, suppose 0 < γ = R(K) < ∞, and (2.11) is violated. Using continuity arguments
one sees that, in order to complete the proof of Theorem 2.5, it is enough to show that
(I + γK0) is invertible.

Let ε ∈ (0, 1) be such that γ ′ = γ/(1+ε) satisfies (2.11). Then the matrix P0 = γ′K0(I+
γ′K0)

−1 has a spectral radius not exceeding 1. We have I + γK0 = (I + γ′K0)(I + εP0), so

10

that I +γK0 equals the product of two invertible matrices. Hence I +γK0 is invertible. �

Proof of Theorem 2.6.
First, suppose K satisfies (2.12). Then the matrices L = 0, M = K satisfy (2.5) – (2.8).

Next, suppose L,M satisfy (2.5) – (2.8). We shall denote by |M0| and |K0| the s × s
matrices with entries |µij | and |κij |, respectively. Defining D = diag(σ1, ..., σs), we have
|M0| = M0D = (K0−L0K0)D = (I−L0)K0D, i.e. K0D = (I−L0)

−1|M0|. In the first part
of the proof of Lemma 2.7, we showed that (2.13) implies (2.14). Using this implication, with
E0 = L0, we obtain (I − L0)

−1 ≥ I, so that K0D ≥ |M0| ≥ 0. Consequently, K0D = |K0|
and therefore KD = (M + LK0)D = |M | + L|K0|. It follows that KD ≥ 0, which proves
(2.12).

Finally, assume again (2.12) and, without loss of generality, that K 6= 0. One easily sees
that, in order to establish (a), (b), (c), it is enough to prove the following two implications:

(i) If L,M satisfy (2.5) – (2.8), then c(L, |M |) ≤ R(|K|).

(ii) If γ is a finite value with 0 < γ ≤ R(|K|), then L,M exist satisfying (2.5) – (2.8) with
L = γ|M |.

In order to prove (i), we assume (2.5) – (2.8). Using (2.9), (2.10) and our assumption K 6= 0,
there follows

|M | = |K| − L|K0|, L ≥ γ|M | ≥ 0 with γ = c(L, |M |) < ∞.

Applying Lemma 2.7 (a) to the pair (L, |M |), we arrive at the inequality in (i).
In order to prove (ii), we consider a finite γ ∈ (0, R(|K|)]. Applying Theorem 2.5

and Lemma 2.7 (b) to the matrix |K|, we see that matrices L, M̃ exist with L = γM̃ ≥
0, M̃ = |K| − L|K0|, satisfying (2.6), (2.7). A multiplication of the last equality by D =
diag(σ1, ..., σs), yields M̃D = K − LK0; so that (2.5) is fulfilled with M = M̃D. Since
M̃ ≥ 0, we have M̃ = |M |. Therefore L,M are as required in (ii). �

3 Generalizing and improving Ruuth & Spiteri’s procedure.

In this section we shall give three General Procedures I, II and III, which can be viewed as
variants to Ruuth & Spiteri’s procedure (1.16). We think that our third procedure is the
most attractive one; we present the other two mainly in order to put the third one in the
right perspective and to compare it more easily with the approach (1.16).

Our procedures are relevant to arbitrary Runge-Kutta methods (not necessarily explicit).
In line with Corollary 2.2 and Remark 2.3 (a), the procedures focus on optimizing c(L, |M |)
– which generalizes the optimization of (1.12), as in Ruuth & Spiteri’s approach. We shall
deal with maximization of c(L, |M |), over all generalized Shu-Osher representations (L,M)
of Runge-Kutta methods with coefficient matrices K = (κij) belonging to a given class C .
We assume all K ∈ C to have the same number of columns, s, and for each individual
K ∈ C we assume that sign indicators σj = ±1 (1 ≤ j ≤ s) exist, with property (2.12).

We denote by C̄ the set of all Shu-Osher pairs (L,M) satisfying (2.5) – (2.8), where K
is any matrix of class C with sign indicators σj .

Below we give our three general procedures. We will use the notation (2.3), and with
γ, κij , λij , µij we denote independent variables.

11

GPI: General Procedure I

maximize γ, subject to the constraints:(3.1.a)

λij − γ |µij | ≥ 0 (i = 1, 2, ..., s + 1, j = 1, 2, ..., s);(3.1.b)

(L,M) ∈ C̄ .(3.1.c)

GPII: General Procedure II

maximize γ, subject to the constraints:(3.2.a)

λij − γ |µij | = 0 (i = 1, 2, ..., s + 1, j = 1, 2, ..., s);(3.2.b)

(L,M) ∈ C̄ .(3.2.c)

GPIII: General Procedure III

maximize γ, subject to the constraints:(3.3.a)

γ satisfies (2.11), with K0, K replaced by |K0|, |K|;(3.3.b)

K = (κij) ∈ C .(3.3.c)

The variable γ, in the above three procedures, corresponds to c(L, |M |). Furthermore,
parameters λij , µij, γ, solving the optimization problems (3.1) or (3.2), yield a Shu-Osher
pair (L,M) in C̄ which is optimal with respect to c(L, |M |); similarly, parameters κij , γ,
solving (3.3), yield an optimal Runge-Kutta matrix K in C . The following theorem relates
the optimal value of c(L, |M |) formally to the maximum of γ in the General Procedures I,
II, III.

Theorem 3.1. Let C be a given class of (s + 1) × s coefficient matrices K such that, for
each individual K = (κij), sign indicators σj = ±1 (1 ≤ j ≤ s) exist satisfying (2.12). Let
C̄ be the set of all Shu-Osher pairs (L,M) satisfying (2.5) – (2.8), where K is any matrix of
class C with sign indicators σj. Assume that c∗ = max{c(L, |M |) : (L,M) ∈ C̄ } exists and
is finite. Then the maximum of γ, under the constraints as specified in any of the General
Procedures I, II or III, exists and equals c∗.

Proof.
1. Clearly, under the assumptions of the theorem, we have, for all (L,M) ∈ C̄ , the

equality

(3.4) c(L, |M |) = max {γ : λij − γ |µij| ≥ 0 (for all i, j)} .

This proves that the maximum of γ, specified in GPI, does exist and is equal to c∗.
2. Let (L∗,M∗) ∈ C̄ be an optimal pair, i.e., c(L∗, |M∗|) = c∗ < ∞; and let K∗ ∈ C be

such that (L∗,M∗) satisfies (2.5) – (2.8) for K = K∗. By applying Theorem 2.6, Part (a),
one can conclude that

(3.5) c∗ = c(L∗, |M∗|) = max
C̄

c(L, |M |) = R(|K∗|) = max
C

R(|K|) < ∞.

From Theorem 2.5, we see that, for each K ∈ C , the value R(|K|) equals the maximum
over all γ satisfying (2.11) with K0, K replaced by |K0|, |K|. In view of (3.5), we thus see
that GPIII yields the value c∗.

12

3. By virtue of Theorem 2.6, we have c∗ = max c(L, |M |) where the maximum is over
all (L,M) ∈ C̄ , with L = γ|M |, γ ∈ R. For any pair (L,M) of this type, we see from (3.4)
that c(L, |M |) = γ. Consequently, also GPII yields the value c∗. �

Clearly, General Procedure I can be viewed as a direct generalization of Ruuth & Spiteri’s
procedure (1.16) for Es,p, to arbitrary classes C of general Runge-Kutta methods.

General Procedure II can be regarded as an improvement over GPI, because the number
of independent variables has essentially been reduced by (almost) 50%. Clearly, GPII can
be expected to be considerably more efficient than GPI.

Finally, although (3.3.b) is usually more complicated than (3.2.b), we still think that
General Procedure III constitutes a (further) improvement over GPII (and a-fortiori over
GPI). The fact is that condition (3.3.c) is simpler to handle than (3.2.c). To see this, suppose
we want to search for optimal methods in C = Es,p, using GPII. Then the pairs (L,M) of
class C̄ must be specified by using the algebraic conditions for the order p. Similarly as in
the original procedure (1.16), the order conditions, known in terms of K, would have to be
rewritten in terms of L and M via complicated (and time consuming) routines; see, e.g.,
Spiteri & Ruuth (2002), Ruuth (2004) and references therein. Similar reformulations would
have to be performed in case we were interested in methods with special structures of the
matrix K, e.g., low-storage schemes or singly-diagonally-implicit schemes. When seen in
this light, GPIII has an advantage over GPII because, in the former procedure, the order
conditions (and special structures) can easily and directly be implemented in terms of K.

For completeness, we note that the above General Procedures I, I, III are also highly
relevant to the important search for methods K ∈ C which are optimal with respect to
c(L,M) and R(K) (rather than c(L, |M |) and R(|K|). When looking for such methods, one
can simply apply the general procedures, with C replaced by C+ = {K : K ∈ C and K ≥
0}; because for any K = (κij), with a negative entry κij , we have R(K) = c(L,M) = 0 (see
Theorem 2.5 and (2.11), (2.9)).

4 Illustrating our General Procedure III in a search for some
optimal singly-diagonally-implicit Runge-Kutta methods.

In the literature, much attention has been paid to a special class of implicit Runge-Kutta
methods, the so-called singly-diagonally-implicit Runge-Kutta (SDIRK) methods, i.e. meth-
ods K = (κij) with κij = 0 (j > i) and κ11 6= 0, κii = κ11 (2 ≤ i ≤ s). For a discussion
of SDIRK methods, and their computational advantages over other (fully) implicit Runge-
Kutta methods, see, e.g., Butcher (1987), Hairer, Nørsett & Wanner (1993), Hairer &
Wanner (1996), Kværnø, Nørsett & Owren (1996) and the references therein.

In the present section, we shall illustrate our General Procedure III in a search for some
optimal SDIRK methods. We shall denote by Ss,p the class of all singly-diagonally-implicit
s-stage Runge-Kutta methods K = (κij) with order of accuracy at least p, such that κii > 0
and sign indicators σj = ±1 exist satisfying (2.12). Clearly, for any K ∈ Ss,p, all σj must be
equal to 1. Consequently, in line with Remark 2.3 (a) and Theorem 2.6, only the function
F itself (and no additional F̃ as in (1.11)) would be needed when a method of class Ss,p is
applied in the situation (1.1), (1.9). Clearly, for all K ∈ Ss,p and (L,M) ∈ S̄s,p, we have
K ≥ 0, M ≥ 0, so that R(|K|) = R(K), c(L, |M |) = c(L,M).

It is well known that the implicit Euler method K = (κij), with s = 1, κ1,1 = κ2,1 = 1,

13

has an order p = 1 and the (optimal) value R(K) = ∞; see, e.g., Kraaijevanger (1991,
Lemma 4.5). Consequently, any search for optimal methods in Ss,p with p = 1 is superfluous.
Below we shall focus on computing optimal methods K in Ss,p with p = 2, 3.

We applied GPIII to C = Ss,p for s = 1, ..., 10 and p = 2, 3, and we implemented it by
using Matlab’s Optimization Toolbox. In Table 1 we have collected the maximal coefficients
cs,p = max{c(L,M) : (L,M) ∈ S̄s,p} = max{R(K) : K ∈ Ss,p}, which we obtained with
this implementation of PGIII.

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10

p = 2 2 4 6 8 10 12 14 16 18 20

p = 3 - 2.7321 4.8284 6.8730 8.8990 10.9161 12.9282 14.9373 16.9443 18.9499

Table 1: The maximal coefficients cs,p = c(L,M) = R(K) for generalized Shu-Osher
representations (L,M) (in S̄s,p) and SDIRK methods K (in Ss,p).

The table clearly shows that, for given p, the stepsize coefficients cs,p, corresponding to
the optimal methods in Ss,p, become larger when s increases. A larger value of cs,p means
that monotonicity preservation can be guaranteed under a milder stepsize restriction (1.10)
(with c = cs,p), but this does not automatically imply a better overall efficiency – because,
e.g., also the computational labor per step should be taken into account – cf. Spiteri and
Ruuth (2002, Section 3), Ferracina & Spijker (2004, Section 4.2) for related considerations.

By trial and error, we found explicit formulae for the optimal methods K, and corre-
sponding values R(K), which coincide, up to all computed decimal digits, to the values
which we obtained numerically using GPIII. For the optimal methods K = (κij), in Ss,2,
we found the following explicit formulae:

R(K) = cs,2 = 2s, and κij =











1
2s

if i = j, 1 ≤ i ≤ s,
1
s

if 1 ≤ j < i ≤ s + 1,

0 otherwise.

(4.1)

For the optimal methods K = (κij), in Ss,3, we found

R(K) = cs,3 = s − 1 +
√

s2 − 1, and κij =



























1
2

(

1 −
√

s−1
s+1

)

if i = j, 1 ≤ i ≤ s,
1√

s2−1
if 1 ≤ j < i ≤ s,

1
s

if i = s + 1, 1 ≤ j ≤ s,

0 otherwise.

(4.2)

In the following, we shall refer to the SDIRK methods (4.1) and (4.2) as SDIRK(s, 2)
and SDIRK(s, 3), respectively.

5 A numerical illustration.

In this section, we shall give a simple numerical illustration to the material presented above.
We shall focus on the TVD properties of the methods SDIRK(s, p) for s = p − 1, p, p + 1.

We will apply the methods in the numerical solution of the 1-dimensional Buckley-
Leverett equation, defined by (1.4) with Φ(v) = 3v2

3v2+(1−v)2
; see, e.g., LeVeque (2002). We

14

consider this equation for 0 ≤ x ≤ 1, 0 ≤ t ≤ 1/8, with (periodic) boundary condition
u(0, t) = u(1, t) and initial condition

u(x, 0) =

{

0 for 0 < x ≤ 1
2 ,

1
2 for 1

2 < x ≤ 1.

We semi-discretize this Buckley-Leverett problem using a uniform grid with mesh-points
xj = j∆x, where j = 1, ..., N , ∆x = 1/N and N = 100. The partial differential equation is
replaced by the system of ordinary differential equations

U ′
j(t) =

1

∆x

(

Φ(Uj− 1

2

(t)) − Φ(Uj+ 1

2

(t))
)

(j = 1, 2, ..., N),

where Uj(t) is to approximate u(xj , t). Following Hundsdorfer & Verwer (2003, III, Section
1), we define

Uj+ 1

2

= Uj +
1

2
ϕ(θj)(Uj+1 − Uj),

where ϕ(θ) is a (limiter) function due to Koren – see, loc. cit. – defined by

ϕ(θ) = max(0,min(2,
2

3
+

1

3
θ, 2θ)),

and

θj =
Uj − Uj−1

Uj+1 − Uj

.

In line with the periodicity of the boundary condition, we use the convention Up = Uq if
p ≡ q mod N . We thus arrive at a system of N = 100 ordinary differential equations that
can be written in the form d

dt
U(t) = F (U(t)).

We define u0 to be the vector in R
N , N = 100, with components u0,j = 0 (for 1 ≤ j ≤

50), u0,j = 1/2 (for 51 ≤ j ≤ 100). The resulting initial value problem, of the form (1.1),
was integrated by the forward Euler method and by the SDIRK(s, p) methods mentioned
above.

In Figure 1, the maximal ratio of the TV-seminorm ‖y‖TV =
∑N

j=1 |ηj−ηj−1| (where y =
(η1, ..., ηN), η0 = ηN) of two consecutive numerical approximations, in the time interval
[0, 1

8], is plotted as a function of the stepsize; i.e, the quantity

(5.1) r(∆t) = max

{ ‖un‖TV

‖un−1‖TV
: n ≥ 1 with n∆t ≤ 1

8

}

is plotted as a function of ∆t. We note that in Figure 1, the value r(∆t) = 1 corresponds to
the monotonicity-preserving situation where ‖un‖TV ≤ ‖un−1‖TV for all n ≥ 1, n∆t ≤ 1/8.

We found that the Euler method is monotonic (TVD) for 0 < ∆t ≤ τ ≈ 0.0025, and
the SDIRK(s, p) methods for 0 < ∆t ≤ ∆ts,p, where ∆t1,2 ≈ 0.0050, ∆t2,2 ≈ 0.0102,
∆t3,2 ≈ 0.0152, ∆t2,3 ≈ 0.0092, ∆t3,3 ≈ 0.0136, ∆t4,3 ≈ 0.0184. Clearly, these numerically
observed thresholds ∆ts,p are amply larger than the threshold τ for the Euler method and,
for given p, they increase when s increases. This can be viewed as a numerical reflection
(and confirmation) of Remark 2.3 (a) (with all σj = 1) and of the fact that, in Table 1, the
coefficients cs,p satisfy: 1 < cs,p < cs+1,p.

For p = 2, we see from the above that ∆ts,p/τ ≈ cs,p = 2s. In this connection, it
is interesting to note that the relation ∆ts,2 ≥ s∆t1,2 follows directly from our formula
(4.1) for SDIRK(s, 2). In fact, from (4.1) we see that SDIRK(s, 2) amounts to applying
SDIRK(1, 2) s times in succession, with ∆t replaced by ∆t/s.

15

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

Stepsize

rat
io

(5.
1)

Explicit Euler
SDIRK(1,2)
SDIRK(2,2)
SDIRK(3,2)

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

Stepsize

rat
io

(5.
1)

Explicit Euler
SDIRK(2,3)
SDIRK(3,3)
SDIRK(4,3)

Figure 1: The ratio (5.1) vs. the stepsize ∆t.

6 Conjectures, open questions and final remarks.

The optimal methods (4.1), (4.2) were obtained via a numerical search based on our Gen-
eral Procedure III. Clearly, this does not provide us with a formal proof of the optimality
of these methods. Since the matrices K which we found numerically, correspond to (4.1),
(4.2) up to all computed digits, we are naturally led to the following

Conjecture 6.1.

(a) Let p = 2 and s ≥ 1. Then there is a unique method K = (κij) in Ss,p which is
optimal with respect to R(K), and this optimal method satisfies (4.1).

(b) Let p = 3 and s ≥ 2. Then there is a unique method K = (κij) in Ss,p which is
optimal with respect to R(K), and this optimal method satisfies (4.2).

We can prove the conjecture in a straightforward way (only) for the special cases
(s, p) = (1, 2), (2, 2) and (s, p) = (2, 3).

In fact, one easily sees that there is a unique SDIRK method K = (κij) with s = 1 and
p = 2, viz. the implicit midpoint rule, for which κ1,1 = 1/2, κ2,1 = 1, R(K) = 2. This
proves Conjecture 6.1 (a) for the special case where s = 1. For the case (s, p) = (2, 2), a
proof was given in Ferracina & Spijker (2005, Section 4.3).

Furthermore, there exist two different SDIRK methods K = (κij) with s = 2 and p = 3,
and explicit expressions for the coefficients κij are available – see, e.g., Kværnø, Nørsett
& Owren (1996, Table1). From these expressions, one easily sees that just one of the two
methods belongs to S2,3, and that it satisfies (4.2) with s = 2. This proves Conjecture 6.1
(b) for the special case where s = 2.

16

Let C denote the class of all SDIRK methods K, with s stages and order at least p.
Clearly, the class C+ = {K : K ∈ C and K ≥ 0} equals Ss,p. In line with the last
paragraph of Section 3, and under the assumption that Conjecture 6.1 is true, we thus can
conclude that the methods SDIRK(s, p) with p = 2, 3 – i.e (4.1), (4.2), respectively – are
optimal (with respect to R(K)) not only in Ss,p, but even in the wider class C .

The numerical experiments in Section 5 support the idea that the (optimal) methods
(4.1), (4.2) allow a stepsize ∆t which is large, compared to τ0, while maintaining mono-
tonicity, notably the TVD property. Because we want to keep the present work sufficiently
concise, we have not entered into the (related) question when, and in how far, these methods
are actually more efficient than other (explicit) Runge-Kutta methods. Likewise, we have
not discussed the application of GPIII to other classes than Ss,2 and Ss,3 – e.g. (for given
s, p) the class of all Runge-Kutta methods K = (κij), with s stages and order at least p,
satisfying (2.12). We hope to come back to these interesting questions in future work.

References

[1] Butcher J. C. (1987): The numerical analysis of ordinary differential equations.
Runge Kutta and general linear methods. A Wiley-Interscience Publication. John Wiley
& Sons Ltd. (Chichester).

[2] Ferracina L., Spijker M. N. (2004): Stepsize restrictions for the total-variation-
diminishing property in general Runge-Kutta methods. SIAM J. Numer. Anal., 42
No. 3, 1073–1093.

[3] Ferracina L., Spijker M. N. (2005): An extension and analysis of the Shu-Osher
representation of Runge-Kutta methods. Math. Comp., 74 No. 249, 201–219.

[4] Gottlieb S., Shu C.-W., Tadmor E. (2001): Strong stability-preserving high-order
time discretization methods. SIAM Rev., 43 No. 1, 89–112.

[5] Hairer E., Nørsett S. P., Wanner G. (1993): Solving ordinary differential equa-
tions. I. Nonstiff problems, vol. 8 of Springer Series in Computational Mathematics.
Springer-Verlag (Berlin), second ed.

[6] Hairer E., Wanner G. (1996): Solving ordinary differential equations. II. Stiff and
differential-algebraic problems, vol. 14 of Springer Series in Computational Mathemat-
ics. Springer-Verlag (Berlin), second ed.

[7] Harten A. (1983): High resolution schemes for hyperbolic conservation laws. J.
Comput. Phys., 49 No. 3, 357–393.

[8] Higueras I. (2003): Representation of Runge-Kutta methods and strong stability pre-
serving methods. Tech. rep., Departamento de Matemática e Informática, Universidad
Pública de Navarra.

[9] Higueras I. (2004): Strong stability for additive Rung-Kutta methods. Tech. rep.,
Departamento de Matemática e Informática, Universidad Pública de Navarra.

[10] Horn R. A., Johnson C. R. (1985): Matrix analysis. Cambridge University Press
(Cambridge).

17

[11] Horváth Z. (1998): Positivity of Runge-Kutta and diagonally split Runge-Kutta
methods. Appl. Numer. Math., 28 No. 2-4, 309–326. Eighth Conference on the Numer-
ical Treatment of Differential Equations (Alexisbad, 1997).

[12] Hundsdorfer W. H., Ruuth S. J. (2003): Monotonicity for time discretizations.
Procs. Dundee Conference 2003, pp. 85-94. Eds. D.F. Griffiths, G.A. Watson, Report
NA/217, Univ. of Dundee.

[13] Hundsdorfer W. H., Verwer J. G. (2003): Numerical solution of time-dependent
advection-diffusion-reaction equations, vol. 33 of Springer Series in Computational
Mathematics. Springer (Berlin).

[14] Kraaijevanger J. F. B. M. (1991): Contractivity of Runge-Kutta methods. BIT,
31 No. 3, 482–528.

[15] Kværnø A., Nørsett S. P., Owren B. (1996): Runge-Kutta research in Trond-
heim. Appl. Numer. Math., 22 No. 1-3, 263–277. Special issue celebrating the centenary
of Runge-Kutta methods.

[16] Laney C. B. (1998): Computational gasdynamics. Cambridge University Press (Cam-
bridge).

[17] LeVeque R. J. (2002): Finite volume methods for hyperbolic problems. Cambridge
Texts in Applied Mathematics. Cambridge University Press (Cambridge).

[18] Ruuth S. J. (2004): Global optimization of explicit strong-stability-preserving Runge-
Kutta methods. Tech. rep., Department of Mathematics Simon Fraser University.

[19] Ruuth S. J., Spiteri R. J. (2004): High-order strong-stability-preserving runge–
kutta methods with downwind-biased spatial discretizations. SIAM J. Numer. Anal.,
42 No. 3, 974–996.

[20] Shu C.-W. (1988): Total-variation-diminishing time discretizations. SIAM J. Sci.
Statist. Comput., 9 No. 6, 1073–1084.

[21] Shu C.-W. (2002): A survey of strong stability preserving high-order time discretiza-
tions. In Collected Lectures on the Preservation of Stability under Discretization,
S. T. E. D. Estep, Ed., pp. 51–65. SIAM (Philadelphia).

[22] Shu C.-W., Osher S. (1988): Efficient implementation of essentially nonoscillatory
shock-capturing schemes. J. Comput. Phys., 77 No. 2, 439–471.

[23] Spiteri R. J., Ruuth S. J. (2002): A new class of optimal high-order strong-stability-
preserving time discretization methods. SIAM J. Numer. Anal., 40 No. 2, 469–491
(electronic).

[24] Spiteri R. J., Ruuth S. J. (2003): Non-linear evolution using optimal fourth-
order strong-stability-preserving Runge-Kutta methods. Math. Comput. Simulation,
62 No. 1-2, 125–135.

18

