Optimal Expansions in non-integer base Karma Dajani

For a given positive integer m, let $A = \{0, 1, \ldots, m\}$ and $\beta \in (m, m + 1)$. A sequence $(c_i) = c_1 c_2 \ldots$ consisting of elements in A is called a β -expansion of x if $\sum_{i=1}^{\infty} c_i \beta^{-i} = x$. It is well known that almost every $x \in [0, m/(\beta - 1)]$ has uncountably many expansions. We call an expansion (d_i) of x optimal if for all $n \ge 1$, the inequality $x - \sum_{i=1}^{n} d_i \beta^{-i} \le x - \sum_{i=1}^{n} c_i \beta^{-i}$ holds for any other expansion (c_i) of x. We show that optimal expansions almost always fail to exist except for a countable set P consisting of those bases $\beta \in (m, m + 1)$ which satisfy one of the equalities

$$1 = \frac{m}{\beta} + \dots + \frac{m}{\beta^n} + \frac{p}{\beta^{n+1}}, \quad n \in \mathbb{N} \text{ and } p \in \{1, \dots, m\}.$$

More precisely, we have the following dichotomy:

Theorem

- (i) If $\beta \in P$, then each $x \in [0, m/(\beta 1)]$ has an optimal expansion.
- (ii) If $\beta \in (m, m+1) \setminus P$, then the set of numbers $x \in [0, m/(\beta 1)]$ with an optimal expansion is nowhere dense and has Lebesgue measure zero.

This is joint work with Vilmos Komornik, Paola Loreti and Martijn de Vries.