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Preface.

These notes, though mainly written after the course was given, follow quite closely my
lectures at the 22nd Saint Flour École d’Été de Calcul des Probabilités, 8–25 July 1992.
I am really grateful to the organisers and the participants who have shaped the lecture
notes in many ways.

The vague title is a cover-up for the more honest ‘topics in and around survival
analysis which interest me at the moment, with an audience of French probabilists in
mind’. Accordingly, the main theme of the lectures—to my mind the fundamental
notion in survival analysis—is product-integration, and to begin with I have tried to
cover its basic theory in fair detail. Probabilistic connections are emphasized.

The next group of lectures study the Kaplan-Meier or product-limit estimator: the
natural generalisation, for randomly censored survival times, of the empirical distribu-
tion function considered as nonparametric estimator of an unknown distribution. Using
product-integration, the asymptotics of the Kaplan-Meier estimator are treated in two
different ways: firstly, using modern empirical process theory, and secondly, using mar-
tingale methods. In both approaches a simple identity from product-integration, the
Duhamel equation, does all the real work. Counting processes lurk in the background
of the martingale approach though they are not treated here at length; the interested
reader is urged to follow them up in the book Statistical models based on counting pro-
cesses by P.K. Andersen, Ø. Borgan, R.D. Gill and N. Keiding (1993); the book is
referred to as ‘ABGK’ in the sequel.

I also neglect statistical issues such as asymptotic optimality theory, partly with my
audience in mind, and partly because this subject is still very fluid with, in my opinion,
interesting developments ahead; the reader is referred in the meantime to Section IV.1.5
and Chapter VIII of ABGK. However beneath the surface statistical ideas, especially
involving nonparametric maximum likelihood, are ever-present and give the real reason
for many otherwise surprising results.

Neglected in the written notes are applications, though, in the real lectures, illus-
trations taken from ABGK were prominent.

Most of this part of the course covers classical material, though there are also
new results. One of the most striking is the proof, using discrete time martingales, of
Stute and Wang’s (1993) very recent Glivenko-Cantelli theorem for the Kaplan-Meier
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estimator. I suspect the techniques used here could find applicability in many other
problems in survival analysis of a sequential or combinatorial nature. Another striking
result is the use of van der Laan’s identity (on estimation of linear parameters in convex
models; van der Laan, 1993a) to give a more or less two-line proof of consistency, weak
convergence, and correctness of the bootstrap, of the Kaplan-Meier estimator. We
also give a new bootstrap confidence band construction for the Kaplan-Meier estimator
‘on the whole line’ (the first ‘whole line’ confidence band which does not rely on any
integrability conditions at all).

While the first part of the lecture notes contains an introduction to survival analysis
or rather to some of the mathematical tools which can be used there, the second part
goes beyond or outside survival analysis and looks at somehow related problems in
multivariate time and in spatial statistics: we give an introduction to Dabrowska’s
multivariate product-limit estimator, to non-parametric estimation in Laslett’s line-
segment problem (again using van der Laan’s identity), and to the estimation of inter-
event distance distributions in spatial point processes. All these topics involve in some
way or another variants of the Kaplan-Meier estimator. The results are taken from
‘work in progress’ and are sometimes provisional in nature.

Many topics central to survival anaysis (the Cox regression model; the log rank
test; and so on) are missing in this course. Even when we restrict attention to product-
limit type estimators, it is a pity not to have included sections on the Aalen-Johansen
product-limit estimator for an inhomogenous Markov process, and to nonparametric
estimation with randomly truncated data. Again, the disappointed reader is referred to
ABGK to rectify such omissions.

Finally one lecture was given on something completely different: the cryptographic
approach to random number generation. One section on that subject is therefore also
included here ‘for the record’.

Contents
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2. Product-integration.
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4. Analytic properties of product-integration.
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1. Introduction: survival and hazard

Survival analysis is the branch of applied statistics dealing with the analysis of data
on times of events in individual life-histories (human or otherwise). A more modern
and broader title is generalised event history analysis. To begin with, the event in
question was often the failure of a medical treatment designed to keep cancer patients
in remission and the emergence and growth of survival analysis was directly connected
to the large amount of resources put into cancer research. This area of medical statistics
brought a whole new class of problems to the fore, especially the problem of how to
deal with censored data. At first many ad hoc techniques were used to get around these
problems but slowly a unifying idea emerged. This is to see such data as the result of a
dynamic process in time, each further day of observation producing some new pieces of
data. Tractable statistical models are based on modelling events continuously in time,
conditioning on past events; and new statistical ideas such as partial likelihood are also
based on this dynamic time structure.

This means that the basic notion in the mathematics of survival analysis is surely
that of the hazard rate, and the basic mathematical tool is product-integration, providing
the means of moving to and fro between a dynamic description in terms of hazards (or
more generally, intensities) and a more static description in terms of probability densities
or their tail integrals, the survival function. We start by defining these basic notions and
show how the relation between hazard and survival is a general instance of a relation
between additive and multiplicative interval functions.

Let T be a positive random variable, with distribution function F , representing the
time of occurrence of some event. The survival function S is defined by

S(t) = P(T > t),

the probability of surviving (not experiencing the event) up to (and including) time t.
Of course S = 1 − F . We define the cumulative hazard function Λ by

Λ(t) =

∫ t

0

F (ds)

S(s−)
.

One may check (e.g., using dominated convergence for t such that S(t−) > 0, and a
monotonicity argument for other t) that

Λ(t) = lim
∑

i

(
1 − S(ti)

S(ti−1)

)
=
∑

i

P(T ≤ ti | T > ti−1)

where 0 = t0 < t1 < . . . < tn = t is a partition of (0, t] and the limit is taken as the
mesh of the partition, maxi |ti − ti−1|, converges to zero.

One can also consider Λ as a measure, Λ(dt) = F (dt)/S(t−). Treating dt not just
as the length of a small time interval [t, t + dt) but also as the name of the interval
itself, one can interpret Λ(dt) as P (T ∈ dt | T ≥ t), hence the name hazard, the risk of
experiencing the event (death, failure, . . . ) in the small time interval dt, given survival
up to the start of the interval. (It is necessary to think of the interval dt as left closed,
right open, in contrast to ordinary time intervals which will usually be left open, right
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closed). For an ordinary interval (s, t] we write Λ(s, t) = Λ((s, t]) = Λ(t) − Λ(s) for
the total hazard of the time interval. This makes Λ an additive interval function: for
s ≤ t ≤ u,

Λ(s, u) = Λ(s, t) + Λ(t, u).

The survival function S generates another interval function, which we denote
S(s, t):

S(s, t) =
S(t)

S(s)
= P(T > t | T > s),

the probability of surviving the interval (s, t] given one survives its starting point s. We
may call this the conditional survival function. This interval function is multiplicative:
for s ≤ t ≤ u

S(s, u) = S(s, t)S(t, u).

From now on one must be careful: when treating S as an interval function we naturally
write S(dt) for S([t, t+ dt)) = S(t−, (t+ dt)−); informally, the probability of surviving
dt = [t, t+dt) given survival up to but not including t. This must not be confused with
an infinitesimal element of the additive measure generated in the ordinary way by the
function of one variable t 7→ S(t).

We now have the following facts about the interval functions S and Λ: S is multi-
plicative, while Λ is additive; moreover they are related by

Λ(ds) = 1 − S(ds)

or equivalently
S(ds) = 1 − Λ(ds).

Adding Λ(ds) over small time intervals ds forming a partition of (0, t], and similarly
multiplying S(ds) over the small intervals, these two formulas give the, for the time
being informal, duality:

Λ(t) = Λ(0, t) =

∫

(0,t]

(1 − S(ds))

S(t) = S(0, t) =

(0,t]

(1 − Λ(ds)).

A small point of heuristics: to make the intervals match up properly one should think
of (0, t] as being the same as [0 + d0, t + dt). The integral

∫
and product-integral

will be defined formally as limits over partitions of (0, t] with mesh converging to zero
of sums and products respectively of the interval functions 1 − S and 1 − Λ. We have
found:

The hazard Λ, an additive interval function, is the additive integral of 1 − S; con-
versely the survival function S, seen as a multiplicative interval function, is the
multiplicative integral of 1 − Λ.

Since S(s, t) =
t

s(1 − dΛ), Λ(s, t) =
∫ t

s
(1 − dS), it follows from this duality that the

conditional distribution of T given T > s has hazard function Λ(s, ·) on (s,∞) or in
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other words hazard measure Λ|(s,∞).
This is good motivation to study the duality both in more detail and more general-

ity. In particular we will generalise the duality to the case when Λ and S are replaced by
(square) matrix valued functions (and 1 by the identity matrix): this will produce the
duality between the multiplicative transition matrix and the additive matrix intensity
measure of a finite state space, time inhomogenous Markov process.

Another aspect of product-integral formalism is that it gives an effortless unification
of the discrete and continuous cases. Consider two special cases of the above: that in
which the distribution of T is absolutely continuous, and that in which it is discrete.
In the discrete case where T has a discrete density f(t) = P(T = t) we define the
discrete hazard function λ(t) = P(T = t | T ≥ t) and find Λ(t) =

∑
s≤t λ(s), S(t) =∏

s≤t(1−λ(s)). On the other hand, in the continous case where T has a density f = F ′,

we define the hazard rate λ = f/(1 − F ). We find Λ(t) =
∫ t

0
λ(s)ds, and our product-

integral representation S(t) =
t

0
(1 − Λ(ds)) becomes S(t) = exp(−Λ(t)), which is a

much less intuitive and seemingly quite different relationship.
We will establish continuity and even differentiablity properties of the product-

integral mapping which in particular gives information on how to go from discrete to
continuous survival functions, and from discrete time Markov chains to continuous time
Markov processes. Later (section 11) we will also take a look at product-integration
over higher-dimensional (non ordered) time.

2. Product-integration.

Product-integration was introduced by Volterra (1887). An extensive survey, including
some of the history of product-integration, is given by Gill and Johansen (1990). Here
we take (and improve slightly) their approach, which was based on MacNerney (1963)
with a key element coming from Dobrushin (1953). Another survey with many more
references and applications but taking a different approach is given by Dollard and
Friedman (1979).

α and µ will denote p× p matrix valued additive, respectively multiplicative, right
continuous interval functions on [0,∞). The identity matrix and the zero matrix will
simply be written as 1 and 0; the context will always show what is meant. The special
case p = 1 and α ≥ 0, or µ ≥ 1, will be called ‘the real, nonnegative case’, and we
will write α0 and µ0 instead of α and µ for emphasis. We want to establish the duality
µ = (1 + dα), α =

∫
(dµ − 1), and derive further properties of the product-integral.

Intuitively the duality follows by noting that for a small interval ds, µ(ds) = 1 + α(ds)
if and only if α(ds) = µ(ds) − 1. Now multiplying or adding over a fine partition of
(0, t] gives the required relations.

The approach will be to consider the real nonnegative case first, deriving the results
in that case by a simple monotonicity argument. Then we show how the general case
follows from this special one through a so-called domination property together with
some easy algebraic identities concerning matrix sums and products. Results on hazard
and survival will follow by taking α = −Λ, µ = S. Since −Λ ≤ 0 and S ≤ 1, the
complete argument via domination is needed in this case, even though Λ and S are
scalar.
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This part of the theory (following MacNerney, 1963) shows that product-integrals
exist as limits, under refinements of partitions of an interval, of finite products over the
subintervals in the partition. Right continuity plays no role yet. Using right continuity,
we strengthen this to a uniform limit as the mesh of the partition (the length of the
longest subinterval) converges to zero, using an idea from Dobrushin (1953). Right
continuity also allows a measure-theoretic interpretation of the main results.

To begin with we state the algebraic identities. Generalised to continuous products
they will become some of the key properties of product-integrals which we will make
much use of later. In fact, (1) and (2) become the Kolmogorov forward and backward
equations respectively, or alternatively, Volterra integral equations; Volterra’s (1887)
original motivation for introducing product-integration. Equation (3) doesn’t seem to
have a name but is very useful all the same. Equation (4) becomes the Duhamel
equation, a powerful tool expressing the difference between two product-integrals in
terms of the difference of the integrands (the history of its name is not clear). Equation
(5) becomes the Peano series (Peano, 1888), expressing the product-integral as a sum
of repeated integrals (or as a Neumann series).

Lemma 1. Let a1, . . . , an and b1, . . . , bn be p×p matrices. Then (with an empty product
equal to 1):

∏

j

(1 + aj) − 1 =
∑

j

(∏

i<j

(1 + ai)

)
aj , (1)

∏

j

(1 + aj) − 1 =
∑

j

aj

(∏

k>j

(1 + ak)

)
, (2)

∏

i

(1 + ai) − 1 −
∑

i

ai =
∑

i,k : i<k

ai

( ∏

j : i<j<k

(1 + aj)

)
ak, (3)

∏

j

(1 + aj) −
∏

j

(1 + bj) =
∑

j

(∏

i<j

(1 + ai)(aj − bj)
∏

k>j

(1 + bk)

)
. (4)

∏

i

(1 + ai) = 1 +
n∑

m=1

∑

i1<i2<...<im

ai1 . . . aim
. (5)

Proof. Equation (4) is seen to be a telescoping sum if one replaces the middle term on
the right, aj − bj , with (1 + aj) − (1 + bj), and expands on this difference. Equations
(1) and (2) follow by taking all bj and all aj respectively equal to the zero matrix
0. Equation (3) follows by taking the ‘−1’ in (2) to the right hand side, and then
substituting for

∏
(1 + ai) in the right hand side of (1). Equation (5) is obvious. ⊔⊓

Now let α and µ respectively be additive and multiplicative interval functions which
are right continuous:

α(s, t) → α(s, s) = 0 as t ↓ s,
µ(s, t) → µ(s, s) = 1 as t ↓ s.

By α0 and µ0 we denote respectively additive and multiplicative real right continuous
interval functions with α0 ≥ 0 and µ0 − 1 ≥ 0. We suppose α is dominated by α0 and
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µ− 1 by µ0 − 1, which means ‖α‖ ≤ α0 and ‖µ− 1‖ ≤ µ0 − 1. Here, ‖a‖ is the matrix
norm maxi

∑
j |aij |, which means we also have

‖a+ b‖ ≤ ‖a‖ + ‖b‖, ‖ab‖ ≤ ‖a‖‖b‖, ‖1‖ = 1.

It will turn out that domination of µ− 1 by µ0 − 1 for a multiplicative interval function
µ0 is equivalent to domination by an additive interval function α0; one can then take
µ0 = (1 + dα0).

We say alternatively that µ− 1 and α are of bounded variation if µ− 1 and α are
dominated by real, right continuous, additive interval functions. For the time being the
right continuity of α and µ will not be important. The property will be used later when
we interpret our results in terms of standard (measure theoretic) integration theory.

Let (s, t] denote a fixed time interval and let T denote a partition of (s, t] into a
finite number of sub-intervals. Note the inequalities

1 + a+ b ≤ (1 + a)(1 + b) ≤ exp(a+ b), a, b ≥ 0,

log(xy) ≤ (x− 1) + (y − 1) ≤ xy − 1, x, y ≥ 1.

The first shows that
∏

T (1 + α0) is bounded from above by expα0(s, t) and increases
under refinement of the partition T . Similarly

∑
T (µ0 − 1) is bounded from below by

logµ0(s, t) and decreases under refinement of the partition. This means we may define

(s,t]

(1 + dα0) = lim
T

∏

T

(1 + α0), (6)

∫

(s,t]

(dµ0 − 1) = lim
T

∑

T

(µ0 − 1), (7)

where the limits are taken under refinement of partitions of (s, t]. (Thus: for any ε > 0
and any partition there exists a refinement of that partition such that for all further
refinements, the approximating sum or product is within ε of the limit).

Proposition 1. For given α0 define µ0 = (1 + dα0). Then µ0 ≥ 1 is a right contin-
uous, multiplicative interval function and α0 =

∫
(dµ0 − 1). Conversely, for given µ0

define α0 =
∫
(dµ0 − 1). Then α0 ≥ 0 is a right continuous, additive interval function

and µ0 = (1 + dα0).

Proof. The following bounds are easy to verify: for given α0, µ0 = (1 +dα0) satisfies
exp(α0) − 1 ≥ µ0 − 1 ≥ α0 ≥ 0. Similarly, for given µ0, α0 =

∫
(dµ0 − 1) satisfies

0 ≤ logµ0 ≤ α0 ≤ µ0 − 1. The right continuity is now easy to establish and additivity
or multiplicativity also easily verified.

Our proof of the duality establishes the following chain of inequalities, which gives
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some insight into why the duality holds:

0 ≤
∑

T

(µ0 − 1) − α0(s, t) ≤ µ0(s, t)−
∏

T

(1 + α0)

≤ µ0(s, t)
(∑

T

(µ0 − 1) − α0(s, t)
)
.

(8)

First, let α0 ≥ 0 be given and define µ0 = (1 + dα0). Let αj and µj denote the values
of α0 and µ0 on the elements of the partition T . Using the easy bounds on µ0 and its
multiplicativity we find

0 ≤
∑

T

(µ0 − 1) − α0(s, t)

=
∑

j

(µj − 1 − αj)

≤
∑

j

∏

i<j

(1 + αi)(µj − 1 − αj)
∏

k>j

µk

=
∏

j

µj −
∏

j

(1 + αj)

= µ0(s, t)−
∏

T

(1 + α0).

Since
∏

T (1 + α0) → µ0(s, t) this shows that
∑

T (µ0 − 1) → α0(s, t) and also gives the
first half of (8).

Conversely, let µ0 ≥ 1 be given and define α0 =
∫

(dµ0 − 1). Again using the easy
bounds on α0 and its additivity we find

0 ≤ µ0(s, t) −
∏

T

(1 + α0)

=
∏

j

µj −
∏

j

(1 + αj)

=
∑

j

∏

i<j

µi (µj − 1 − αj)
∏

k>j

(1 + αk)

≤
∑

j

∏

i<j

µi (µj − 1 − αj)
∏

k>j

µk

≤ µ0(s, t)
(∑

T

(µ0 − 1) − α0(s, t)
)
.

Again, α0(s, t) = limT

∑
T (µ0 − 1) shows that µ0(s, t) = limT

∏
T (1 + α0), and also

gives the rest of (8). ⊔⊓
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Theorem 1. Let α be additive, right continuous, and dominated by α0. Then

µ = (1 + dα) = lim
T

∏

T

(1 + α)

exists, is multiplicative, right continuous, and µ − 1 is dominated by µ0 − 1 where
µ0 = (1 + dα0). Conversely if µ is multiplicative, right continuous, and µ − 1 is
dominated by µ0 − 1, then

α =

∫
(dµ− 1) = lim

T

∑

T

(µ− 1)

exists, is additive, right continuous, and is dominated by α0 =
∫

(dµ0 − 1). Finally,
µ = (1 + dα) if and only if α =

∫
(dµ− 1).

Proof. Let S be a refinement of T . Denote by αi, µi the values of α and µ on the
elements of T ; let Ti denote the partition of the ith element of T induced by S; and let
αij denote the values of α on this partition.

Let α be given. Observe that (using, in particular, (3) and (4) of Lemma 1)

∏

S

(1 + α)−
∏

T

(1 + α) =
∏

j

(∏
Tj

(1 + α)
)
−
∏

j

(1 + αj)

=
∑

j

∏

i<j

∏
Ti

(1 + α)
(∏
Tj

(1 + α) − 1 − αj

)∏

k>j

(1 + αk)

=
∑

j

∏

i<j

∏
Ti

(1 + α)
( ∑

l,n : l<n

αjl

∏

m : l<m<n

(1 + αjm) αjn

)∏

k>j

(1 + αj).

Now the final line of this chain of equalities is a sum of products of αij and αi. This
means that its norm is bounded by the same expression in the norms of the αij and αi,
which are bounded by α0ij and α0i. But the whole chain of equalities also holds for α0

itself. Thus we have proved that

0 ≤
∥∥∥
∏

S

(1 + α) −
∏

T

(1 + α)
∥∥∥ ≤

∏

S

(1 + α0) −
∏

T

(1 + α0).

Therefore existence of the product-integral of α0 implies existence of the product-
integral of α. Moreover, keeping T as the trivial partition with the single element (s, t]
but letting S become finer and finer, we obtain that (1 + dα)− 1−α is dominated by

(1 + dα0) − 1 − α0.
Similarly, if µ is given and µ− 1 is dominated by µ0 − 1, observe that (using (3) of
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Lemma 1)

∑

T

(µ− 1) −
∑

S

(µ− 1) =
∑

i

(µi − 1) −
∑

i

∑

Ti

(µ− 1)

=
∑

i

(
µi − 1 −

∑

Ti

(µ− 1)
)

=
∑

i

(∏

Ti

(1 + (µ− 1)) − 1 −
∑

Ti

(µ− 1)
)

=
∑

i

( ∑

j,l : j<l

(µij − 1)
∏

k : j<k<l

µik (µil − 1)
)
.

Now ‖µ− 1‖ ≤ µ0 − 1 so the norm of the last line is bounded by the same expression in
µ0. Existence of the sum integral

∫
(dµ0 − 1) therefore implies existence of

∫
(dµ − 1).

Again, keeping T as the trivial partition but letting S become finer, we obtain that
µ− 1 −

∫
(dµ− 1) is dominated by µ0 − 1 −

∫
(dµ0 − 1).

For given α, domination of µ−1 by µ0 −1; and for given µ, domination of α by α0;
are both easy to obtain. This implies that if µ = (1 + dα) with α dominated by α0

then
∫

(dµ− 1) exists; and similarly if we start with µ with µ− 1 dominated by µ0 − 1.
It remains to show that µ = (1+dα) if and only if α =

∫
(dµ−1). In both directions

we now have that µ− 1−α is dominated by µ0 − 1−α0. For the forwards implication,
we note that

∑
T (µ−1)−α =

∑
T (µ−1−α), which is dominated by

∑
T (µ0−1−α0).

Taking the limit under refinements of T shows α =
∫

(dµ − 1). Conversely, suppose
α =

∫
(dµ− 1). Then µ−∏T (1 + α) =

∑
j

∏
i<j µi (µj − 1 − αj)

∏
k>j(1 + αk). This

is dominated by the same expression in µ0 and α0, and going to the limit gives the
required result. ⊔⊓

Our next task is to show that the product-integral actually exists in a much stronger
sense.

Theorem 2. The product-integral exists as the limit of approximating finite products
as the mesh of the partition tends to zero. The limit is uniform over all intervals (s, t]
contained in a fixed interval (0, τ ] say.

Proof. Let α be dominated by α0. By right continuity and restricting attention to
subintervals of the fixed interval (0, τ ], α0 can be interpreted as an ordinary finite
measure. Let α−

0 denote the interval function whose value on (s, t] is obtained by
subtracting from α0(s, t] the α0 measure of its largest atom in (s, t]. For a partition T
let |T | denote the mesh of the partition, i.e., the length of the largest subinterval in the
partition. By a straightforward ε-δ analysis (see also section 12) one can verify that

|T | → 0 ⇒ max
T

α−
0 → 0.

For any chosen k, we have
∑

i,j : i<j α0iα0j ≤ ∑
i

∑
j 6=k α0iα0j. In particular taking k

as the index maximising α0k, and noting that maxT α0 is at least as large as the largest
atom of α0, we have

∑
i,j : i<j α0iα0j ≤ α0α

−
0 . Now applying (3) with aj the values of
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1 + α over a partition T , and taking norms, we obtain
∥∥∥
∏

T

(1 + α) − 1 − α
∥∥∥ ≤ α0µ0α

−
0 .

Going to the limit under refinements of T , we obtain

∥∥∥ (1 + dα) − 1 − α
∥∥∥ ≤ α0µ0α

−
0 .

Next we look at (4), taking for aj the product-integral of 1 + α over the jth element of
a partition T , and for bj the value of 1 + α itself. Taking norms and substituting the
inequality we have just found for the central term ‖aj − bj‖ we obtain

∥∥∥ (1 + dα) −
∏

T

(1 + α)
∥∥∥ ≤ µ0 max

T
(α0µ0α

−
0 )

which gives us the required result. ⊔⊓
Let aj and bj denote the values on the jth element of a partition T of a given

interval (s, t] of two additive interval functions α and β, both dominated and right-
continuous. Let T be one of a sequence of partitions with mesh converging to zero of
this same interval. In equations (1)–(5) one can interpret the summations as integrals
(or repeated integrals), with respect to the fixed measures α and α− β, of certain step
functions (depending on the partition), constant on the sub-intervals of the partition.
Actually since we are looking at p× p matrices we have, componentwise, finite sums of
such real integrals, but this makes no difference to the argument. By our uniformity
result the integrands are uniformly close to product-integrals of α or β, taken up to or
from an end-point of that sub-interval of the partition through which the variable of
integration is passing. The only real complication is that (5) includes a sum of more
and more terms. However the mth term of the sum is bounded uniformly by the mth
element of the summable sequence αm

0 /m! so gives no difficulties.
All this means that we can go to the limit as |T | → 0 in (1)–(5) and obtain the

following equations:

(s,t]

(1 + dα) − 1 =

∫

u∈(s,t]
(s,u)

(1 + dα)α(du), forward integral equation, (9)

(s,t]

(1 + dα) − 1 =

∫

u∈(s,t]

α(du)

(u,t]

(1 + dα), backward integral equation, (10)

(s,t]

(1 + dα) − 1 − α(s, t) =

∫

s<u<v≤t

α(du)

(u,v)

(1 + dα)α(dv), anonymous, (11)
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(s,t]

(1 + dα) −
(s,t]

(1 + dβ) =

∫

u∈(s,t]
(s,u)

(1 + dα)
(
α(du) − β(du)

)

(u,t]

(1 + dβ),

Duhamel, (12)

(s,t]

(1 + dα) = 1 +
∞∑

m=1

∫

s<u1<...<um≤t

α(du1) . . . α(dum). Peano, (13)

Note how the product-integrals inside the ordinary intervals are now over intervals like
(s, u), (u, v), or (v, t], corresponding to the strict ordering i < j < k in (1)–(5). Exercise

to the doubtful reader: write out the proof of one of these equations in full!
It is easy to produce many more identities from (9)–(12). One equation we will

come across in the next section is obtained from the Duhamel equation (12) by rewriting
it as (1 + dα+ dβ) = (1 + dα) +

∫
(1 + dα+ dβ)dβ (1 + dα) and then repeatedly

substituting for (1+dα+dβ) in the right-hand side. One sees the terms of an infinite
series appearing; the remainder term is easily shown to converge to zero, and we get a
generalization of the Peano series:

(s,t]

(1 + dα+ dβ) =

(s,t]

(1 + dα) +

∞∑

m=1

∫

s<u1<...<um≤t
(s,u1)

(1 + dα)β(du1)
(u1,u2)

(1 + dα)β(du2) . . . β(dum)
(um,t]

(1 + dα).

(14)
This equation is actually a form of the so-called Trotter product formula from the
theory of semi-groups (see Masani, 1981). If

(s,u]
(1 + dα) is nonsingular for all u one

can replace each factor
(ui,ui+1)

(1 + dα) on the right hand side of (14) by (
(s,ui]

(1 +

dα))−1
(s,ui+1)

(1+dα). Taking out a factor (on the right)
(s,t]

(1+dα) then produces

the ordinary Peano series in the measure β′(ds) = (s,u)(1+dα)β(du)( (s,u](1+dα))−1;

thus we obtain the generalised Trotter formula:

(s,t]

(1 + dα+ dβ) =

u∈(s,t]

(
1 +

(s,u)

(1 + dα)β(du)
(

(s,u]

(1 + dα)
)−1
)

(s,t]

(1 + dα).

Masani (1981) points out the analogy between this formula for the multiplicative integral
of a sum and the usual integration by parts formula for additive integration of a product,
though he works with exp(dα) rather than (1 + dα).

One can consider (9) and (10) as Volterra integral equations by replacing the
product-integrals on both sides by an unknown interval function. The solution turns out
to be unique; this can be proved by the standard argument (consider the difference of
two solutions, which satisfies the same equation with the ‘−1’ removed, and repeatedly
substitute left hand side in right hand side). Thus: for given s the unique solution β of

β(s, t) − 1 =

∫

(s,t]

β(s, u−)α(du) (15)
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is β(s, t) =
t

s
(1 + dα), and for given t the unique solution β of

β(s, t) − 1 =

∫

(s,t]

α(du)β(u, t) (16)

is the same. More generally, if ψ is a q × p matrix càdlàg function (right-continuous
with left hand limits) then the unique q × p matrix càdlàg solution φ of

φ(t) = ψ(t) +

∫

(0,t]

φ(s−)α(ds) (17)

is

φ(t) = ψ(t) +

∫

(0,t]

ψ(s−)α(ds)
(s,t]

(1 + dα). (18)

The notion of domination has a measure-theoretic interpretation, close to the usual
notion of bounded variation. We say that a (possibly matrix valued) interval function
β is of bounded variation if and only if its variation, the interval function |β| defined
by |β| = supT

∑
T ‖β‖ is finite and right continuous, where the supremum runs over all

partitions of a given interval. It is quite easy to check that β is of bounded variation
if and only if β is bounded by an additive right continuous interval function α0. The
sufficiency is obvious, the necessity follows by defining α0(s, t) = |β|(0, t) − |β|(0, s).
Then trivially |β|(0, t) ≥ |β|(0, s) + ‖β(s, t)‖ giving us as required that ‖β‖ ≤ α0. The
following special result for multiplicative interval functions is also rather useful:

Proposition 2. µ−1 is dominated by µ0−1 if and only if µ−1 is of bounded variation.

Proof. µ−1 of bounded variation implies µ−1 is dominated by some α0 which implies
µ−1 is dominated by µ0−1 = (1+dα0)−1 ≥ α0. Conversely, µ−1 dominated by µ0−1
implies

∑
T ‖µ − 1‖ ≤ ∑

T (µ0 − 1). But the latter sum decreases under refinements;
hence it is finite (bounded by µ0 − 1 itself) and µ− 1 is of bounded variation. ⊔⊓

We close with remarks on possible generalizations of the above theory. The first
generalization concerns product-integration over more general time variables than the
one-dimensional time t above. What if we replace t by an element of [0,∞)k for in-
stance? The answer is that as long as we stick to scalar measures α, the above theory
can be pretty much reproduced. Restrict attention to subsets of [0,∞)k which are
(hyper)-rectangles (or finite unions of rectangles), and partitions which are finite sets
of rectangles; all the above goes through once we fix an ordering of a finite collection of
rectangles. Equations (9)–(13) need however to be carefully formulated. We return to
this topic in section 12.

Another generalization is to replace α by the random interval function generated
by a p × p matrix semimartingale. Now it is known that all our results hold for semi-
martingales when the product-integral is taken to be the Doléans-Dades exponential
semimartingale, in fact defined as the solution to the stochastic integral equation (15)
(see Karandikar, 1983). When p = 1 it turns out that no deep stochastic analysis is
required to get all the results: all one needs is the fact that the (optional) quadratic
variation process of the semimartingale exists (in probability) as limT

∑
T α

2. Hence
the question:
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Question. Is there an elementary (i.e., deterministic) approach to the Doléans-Dades
exponential semimartingale in the matrix case which takes as starting point just the
existence (as limits of approximating finite sums of products) of the quadratic covariation
processes between all components?

Further background to this question is given by Gill and Johansen (1990). Freedman
(1983) develops product-integration for continuous functions of bounded p-variation,
1 < p < 2 (a different p from the dimension p used till now), and mentions in passing
results on the case p = 2 and 2 × 2 matrices.

Most of the above theory can be further generalised to interval functions taking
values in a complete normed ring. There are surely many applications making use of
such generality, e.g., in the general study of Markov processes (in the next section we
will only consider the case of a finite state space).

Exercise. Find some new applications of product-integration.

3. Markov processes and product-integrals.

The aim of this section is to put on record the main features of the application of
product-integrals to Markov processes, and in preparation for that, to survival times
and to the so-called Bernoulli process. The results we need are: the survival function
is the product-integral of the (negative) hazard and the probability transition matrix
is the product-integral of the matrix intensity measure. Later, in sections 7 and 10,
we will introduce the connection between hazard or intensity measures and martingale
theory.

Survival functions.

First we look at survival functions. Let T > 0 be a survival time with survival function
S and upper support endpoint τ , 0 < τ ≤ ∞, i.e., τ = sup{t : S(t) > 0}. Define
the hazard measure Λ(dt) = F (dt)/S(t−) as a measure on [0,∞); define the interval
function S(s, t) = S(t)/S(s) also on [0,∞) with the convention that 0/0 = 1. We now
have Λ =

∫
(1−dS), S = (1−dΛ) on [0,∞] if S(τ−) > 0, but otherwise only on [0, τ).

Here are the distinguishing features of the two cases and terminology for them:

(i) Termination in an atom. S(τ−) > 0, S(τ) = 0: Λ([0, τ ]) <∞, sups<τ Λ({s}) < 1,
Λ({τ}) = 1, Λ((τ,∞)) = 0.

(ii) Continuous termination. S(τ−) = 0: Λ([0, t]) < ∞ and sups<t Λ({s}) < 1 for all
t < τ , Λ([0, τ)) = ∞, Λ([τ,∞))=0.

Every nonnegative measure Λ on [0,∞) (without an atom at 0) satisfying properties (i)
or (ii) corresponds to a survival function of the appropriate type (of a positive random

variable). In case (ii) we define
τ

0
(1 − dΛ) = limt↑τ

t

0
(1 − dΛ) = 0. A defective

distribution does not have a termination point. The total hazard is finite and the
largest atom of the hazard measure is smaller than 1. In general, the distribution F of
a random variable T with hazard measure Λ can be recovered from the hazard by the
relation

F (dt) =
[0,t)

(1 − dΛ)Λ(dt). (1)



15

One can quite easily show that (1 − dΛ) = exp(−Λc)
∏

(1 − Λd) where Λc and
Λd are the continuous and discrete parts of Λ respectively. Such a relation holds in
general for real product-integrals. We do not emphasize it because in general it is
neither intuitive nor useful. One exception is in the construction of the inhomogenous
Bernoulli process, to which we now turn.

The inhomogenous Bernoulli process.

Let Λ now be a nonnegative measure on [0,∞), finite on [0, t] for each t < ∞, and
whose atoms are less than or equal to one (with no atom at 0). Let Λc and Λd de-
note the continuous and discrete parts of Λ and construct a point process on [0,∞) as
follows: to the events of an inhomogenous Poisson process with intensity measure Λc

add, independently over all atoms of Λ, independent events at the locations t of each
atom with probabilities Λd({t}). The probability of no event in the interval (s, t] is

exp(−Λc((s, t]))
∏

(s,t](1−Λd) =
t

s
(1− dΛ). The expected number of events in (s, t] is

Λ((s, t]). Since the expected number of events in finite time intervals is finite, and all
events are at distinct times with probability one, the times of the events can be ordered
as say 0 < T1 < T2 < . . .. Define N(t) = max{n : Tn ≤ t} as the number of events in
[0, t]. The process N has independent increments and is therefore Markov.

The distribution of the process can also be characterized through its jump times
Tn as follows. Define S(s, t) =

t

s
(1 − dΛ); for given s this is a survival function on

t ≥ s terminating at the first atom of Λ of size 1 after time s, if any exists; it is
defective if there are no such atoms and Λ((s,∞)) < ∞. First T1 is generated from
the survival function S(0, ·). Then, given T1 = t1, T2 > t1 is drawn from S(t1, ·);
then given also T2 = t2, T3 > t2 is drawn from S(t2, ·) and so on. One proof for this
goes via martingale and counting process theory (to which we return in section 7):
by the independent increments property, N − Λ is a martingale; now Jacod’s (1975)
representation of the compensator of a counting process shows how one can read off
the conditional distributions of each Tn given its predecessors from the compensator
Λ of N . See section 10 or ABGK Theorem II.7.1 for this result stated in terms of
product-integration.
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Markov processes.

Now we turn to (inhomogeneous) Markov processes with finite state space, continuous
time. We suppose the process is defined starting at any time point t ∈ [0,∞) from any
state, and makes a finite number of jumps in finite time intervals; its sample paths are
right continuous stepfunctions. The transition probability matrices P (s, t) = (P(X(t) =
j|X(s) = i)i,j) are right continuous and multiplicative. By the theory of product-
integration they are product-integrals of a certain interval function or measure Q which
we call the intensity measure if and only if they are of bounded variation (or dominated)
in the sense we described in the previous section. Now

‖P (s, t)− 1‖ = max
i

∑

j

|pij(s, t) − 1| = 2 max
i

∑

j 6=i

pij(s, t)

≤ 2 max
i

P(∃ a jump in (s, t]|X(s) = i)

≤ 2 max
i

E(# jumps in (s, t]|X(s) = i).

So a sufficient condition for domination is that the expected number of jumps in any
interval, given any starting point at the beginning of the interval, is bounded by a finite
measure. This turns out also to be a necessary condition.

If P − 1 is dominated then P = (1 + dQ) where Q =
∫

d(P − 1) is a dominated,
additive matrix-valued measure. Since the elements of P are probabilities and the row
sums are 1, the row sums of Q are zero; the diagonal elements are non-positive and the
off-diagonal elements non-negative. The atoms of the diagonal elements of Q are not
less than −1.

Define

Λi = −Qii, πij =
dQij

dΛi
, j 6= i. (2)

The πij(t) can be chosen to be a probability measure over j 6= i for each i and t. The
Λi are nonnegative measures, finite on finite intervals, with atoms at most 1.

Conversely, given Λi and πij (or equivalently given Q) with the just mentioned
properties one can construct a Markov process as follows: starting at time s in state
i stay there a sojourn time which has survival function

t

s
(1 − dΛi), t > s; on leaving

state i at time t jump to a new state j with probability πij(t). We want to show that
this process has transition matrices P = (1 + dQ) where the Q are obtained from the
Λi and the πij by using (2) as a definition.

The new process is easily seen to be Markov, though we have not yet ruled out the
possibility of it making an infinite number of jumps in finite time. Let P ∗(s, t) denote its
transition probability matrix for going from any state to any other with a finite number
of jumps, so that P ∗ may have row sums less than one. Let P ∗(n) denote the matrix of
transition probabilities when exactly n jumps are made so that P ∗ =

∑∞
n=0 P

∗(n). Now
by (1), the probability, given we start in state i at time s, of having moved to state j at
time t via the chain of states i = i0, i1, . . . , in = j (and so with precisely n > 0 jumps)
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is
∫

s<t1<...<tn≤t
(s,t1)

(1 − dΛi0)Λi0(dt1)πi0i1(t1)
(t1,t2)

(1 − dΛi1)Λi1(dt2)πi1i2(t2) . . .

. . .Λin−1
(dtn)πin−1in

(tn)
(tn,t]

(1 − dΛin
);

(3)

if n = 0 then it is just δij
t

s
(1 − dΛi). When we add over all possible chains of length

n we obtain the elements of the matrix P ∗(n). Let Q̃ denote the matrix of diagonal
elements of Q; note that Q̃ii = −Λi and that d(Q−Q̃)ij = dΛiπij . The result of adding
over chains can be written (for n > 0) in abbreviated form as

P ∗(n) =

∫
. . .

∫
(1 + dQ̃) d(Q− Q̃) (1 + dQ̃) d(Q− Q̃) . . .d(Q− Q̃) (1 + dQ̃);

for n = 0 we just get P ∗(0) = (1 + dQ̃). Now adding over n to get P ∗ gives us an

expression identical to the right hand side of (2.14) with α = Q̃ and β = Q − Q̃ so
α + β = Q. Thus P ∗ = (1 + dQ) = P , as we wanted to show. Note that since Q
has row sums equal to zero, the multiplicands in the approximating finite products for

(1 + dQ) have row sums one so P ∗ is a proper Markov matrix.
The Peano series (2.13) for (1 + dQ) does not have a probabilistic interpretation.

What we have shown is that ‘expanding about 1 + Q̃ instead of about 1’ does give a
series (2.14) with an important probabilistic interpretation.

The Markov processes having nice sample paths but falling outside of this de-
scription are the processes defined probabilistically through Λi and πij as above but
where the Λi have infinite mass close to some time points. There are two forms of
this, according to whether this infinite mass is just before or just after the time point
in question. Having infinite mass just before corresponds to an ordinary continuous
termination point of the hazard measure for leaving the state, so that the process is
certain to leave a certain state by a certain time point, without exit at any particular
time being certain. (This is only an embarrassment if it is possible to re-enter the state
before the termination time, leading to the possibility of infinitely many jumps in finite
time. Whether or not this possibility has positive probability depends in general, i.e.,
when all transitions are always possible, in a complicated way on the joint behaviour
of all the Qij as one approaches the termination time). Another possibility is infinite
mass just after a given time point, so the sooner after the time point one enters that
state the sooner one leaves it again.

Dobrushin (1954) characterizes when a Markov process is regular (has nice sample
paths) as follows. Given a Markov process with transition matrices P , we say that there
is infinite hazard of leaving state i just before time t if

lim
s↑t

sup
T

∑

T

|pii − 1| = ∞
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where T runs through partitions of (s, t), and infinite hazard for leaving i just after t if

lim
u↓t

sup
T

∑

T

|pii − 1| = ∞

where T now runs through partitions of (t, u]. We say i is inaccessible just before t if

pji(s, u) → 0 as u ↑ t for all s < t and all j

and inaccessible just after t if

pji(s, u) → 0 as u ↓ t for all s < t and all j.

Then the process is regular if and only if infinite hazard only occurs for states which
are inaccessible at the same time. If all states are always accessible, then the process is
regular if and only if P is of bounded variation, and if and only if the expected numbers
of jumps are of bounded variation, and if and only if the expected numbers of jumps
are just finite.

4. Analytical properties of product-integration.

When we come to statistical problems we need to ask how statistical properties of an
estimator of hazard or intensity measure carry over, if at all, to statistical properties
of the corresponding estimators of survival functions or transition matrices. Properties
of particular concern are: consistency; weak convergence; consistency of the bootstrap
or other resampling schemes; asymptotic efficency; and so on. It turns out that many
such results depend only on continuity and differentiability in a certain sense of the
product-integral mapping taking dominated right-continuous additive interval functions
(possibly matrix valued) to multiplicative ones.

We give more general theory when we come to such applications; for the time
being we just show how the Duhamel equation leads naturally to certain continuity and
differentiability properties. The reading of this section could be postponed till these
applications first arise in section 6.

Fix an interval [0, τ ] and consider the two norms on the right continuous matrix
valued interval functions: the supremum norm

‖β‖∞ = sup
s,t

‖β(s, t)‖

and the variation norm
‖β‖v = sup

T

∑

T

‖β‖ = α0(0, τ)

where T runs through all partitions of (0, τ ] and α0 is the smallest real measure domi-

nating β (see end of section 2). Write
∞→ and

v→ for convergence with respect to these

two norms. One easily checks that αn
∞→ α, lim sup ‖αn‖v = M <∞ implies ‖α‖v ≤M .

Now let α and β be two additive interval functions; β will play the role of one of a
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sequence αn of such functions approaching α. Let h = β − α. Consider the difference

(1 + dβ) − (1 + dα) =

∫
(1 + dβ)(dβ − dα) (1 + dα)

=

∫
(1 + dβ)dh (1 + dα).

(1)

We omit the variables of integration and product-integration; the reader should be able
to fill them in but if in doubt look back at the Duhamel equation (2.12) or even the
discrete version (2.4). This must be shown to be small when h is small, in supremum
norm. Integration by parts is the obvious thing to try: in other words, replace (1+dα)
and (1 + dβ) by integrals (the Volterra equations!) and then by Fubini reverse orders
of integration.

Using the backward and forward integral equations we get
∫

(1+dβ)dh (1 + dα) =

∫
dh+

∫ ∫
(1 + dβ)dβdh

+

∫ ∫
dhdα (1 + dα) +

∫ ∫ ∫
(1 + dβ)dβdhdα (1 + dα).

(2)

Next we can reverse the order of all integrations, carrying out the integration with
respect to h before that with respect to α or β. One integration simply disappears and
h is left as an interval function:

∫
(1 + dβ)dh (1 + dα) = h+

∫
(1 + dβ)dβh

+

∫
hdα (1 + dα)

+

∫ ∫
(1 + dα)dαhdβ (1 + dβ).

(3)

Note that this identity does not depend at all on the original relationship h = β − α
between α, β and h. For the reader worried about integration variables we write out
the last term of (3) in full:

∫ ∫

s<u<v≤t

u−

s

(1 + dα)α(du)h(u, v−)β(dv)

t

v

(1 + dβ).

Note also that variation norm boundedness of α and β implies supremum norm bound-
edness of their product-integrals. Consequently if we do have h = β − α then from
(1): ∥∥∥ (1 + dβ) − (1 + dα)

∥∥∥
∞

≤ C‖h‖∞

uniformly in α and β of uniformly bounded variation norm. This is the promised
continuity property of product-integration.

We strengthen this now to a differentiability result; to be precise, continuous Hada-
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mard (compact) differentiability with respect to the supremum norm, but under a vari-
ation norm boundedness condition. This kind of differentiability, intermediate between
the more familiar notions of Fréchet (bounded) and Gâteaux (directional) differentiabil-
ity, is just what we need for various statistical applications as we will see later. Also it
seems to be the best result to be hoped for under the chosen norm. We give more of the
background theory in an appendix to this section and in section 6, and concentrate now
on the bare analysis. The differentiablity result for the product-integral we give here is
due to Gill and Johansen (1990). Statistical theory based on compact differentiability is
developed in Gill (1989), Wellner (1993), and van der Vaart and Wellner (1993). More
applications can be found in Gill, van der Laan and Wellner (1993).

Instead of writing β = α + h write β = α + th where t is real and close to zero.
Compact or Hadamard differentiability means that (1/t)( (1 + dβ) − (1 + dα)) can
be approximated, for t small, by a continuous linear map in h; the approximation to
be uniform over compact sets of h or equivalently along sequences hn. By continuous
compact differentiability we mean that the approximation is also uniform in α (and β).
The ‘integration by parts’ technique we have just used takes us some of the way here.
We shall need just one other new technique, taken from the proof of the Helly-Bray
lemma and which we will call the Helly-Bray technique.

With β = α+ th the Duhamel equation gives us immediately, cf. (1),

1

t

(
(1 + dβ) − (1 + dα)

)
=

∫
(1 + dβ)dh (1 + dα). (4)

This can be rewritten as in (3), the right hand side of which, considered as a mapping
from interval functions h to interval functions, both with the supremum norm, is con-
tinuous in h uniformly in α and β of uniformly bounded variation norm. In this way
we can interpret (1 + dβ)dh (1 + dα) also for h which are not of bounded variation
simply as the right hand side of (3); a definition by ‘formal integration by parts’.

To establish continuous Hadamard differentiability we need to show that (1 +
dβ)dh (1 + dα) is jointly continuous in α, β and h with respect to the supremum
norm, for α and β of uniformly bounded variation norm.

Consider a sequence of triples (αn, βn, hn) which converges in supremum norm to
(α, β, h), and look at the diference between (3) at the nth stage and at the limit. Assume
αn and βn (and hence also α, β) are of uniformly bounded variation norm. Since these
triples will be related by βn = αn +tnhn where tn → 0 then in fact α = β but this is not
important. The Helly-Bray technique is to insert two intermediate pairs (αn, βn, h

∗) and
(α, β, h∗) such that h∗ is of bounded variation. Now we have the following telescoping
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sum:
∫

(1 + dβn)dhn (1 + dαn) −
∫

(1 + dβ)dh (1 + dα)

=

∫
(1 + dβn)(dhn − dh∗) (1 + dαn)

+

(∫
(1 + dβn)dh∗ (1 + dαn) −

∫
(1 + dβ)dh∗ (1 + dα)

)

+

∫
(1 + dβ)(dh− dh∗) (1 + dα).

On the right hand side we now have three terms. For the first and the third, integration
by parts (transforming to something like (3)) and the bounded variation assumption
show that these terms are bounded in supremum norm by a constant times the supre-
mum norm of hn − h∗ and h − h∗. The middle term converges to zero as n → ∞
since the product integrals converge in supremum norm and h∗ is of bounded variation.
Therefore since ‖hn − h∗‖∞ → ‖h − h∗‖∞ the ‘lim sup’ of the supremum norm of the
left hand side is bounded by a constant times ‖h−h∗‖∞, which can be made arbitrarily
small by choice of h∗. This gives us the required result.

To summarize as a continuous compact differentiability result: for α′
n = αn + tnhn

with αn
∞→ α, hn

∞→ h, tn → 0, αn and α′
n of uniformly bounded variation, we have

1

tn

(
(1 + dα′

n) − (1 + dαn)

)
∞→
∫

(1 + dα)dh (1 + dα) (5)

where the right hand side is a (supremum norm) continuous linear mapping in h, inter-
preted for h not of bounded variation by formal integration by parts (see (3)). It is also
jointly continuous in α and h.

A similar but simpler mapping we have to deal with later is ordinary integration of
one, say, càdlàg, function on [0, τ ] with respect to another. The mapping (x, y) 7→

∫
xdy

yields a new càdlàg function if we interpret the integration as being over the intervals
(0, t] for all t ∈ [0, τ ]. To investigate the continuous differentiability of this mapping,
consider (1/tn)

(∫
x′ndy′n −

∫
xndyn

)
=
∫
hndy′n +

∫
xndkn where (x′n, y

′
n) = (xn, yn) +

tn(hn, kn), (xn, yn)
∞→ (x, y), (hn, kn)

∞→ (h, k), tn → 0 (the tn are real numbers, the
rest are càdlàg functions). Assume xn, yn, x′n, y′n (and consequently x, y too) are of
uniformly bounded variation. By the Helly-Bray technique again one easily shows that∫
hndy′n+

∫
xndkn converges in supremum norm to

∫
hdy+

∫
xdk where the second term

is interpreted by formal integration by parts if k is not of bounded variation. The limit
is a continuous linear map in (h, k), continuously in (x, y). Summarized as a continuous

compact differentiabilty result: for (x′n, y
′
n) = (xn, yn) + tn(hn, kn), (xn, yn)

∞→ (x, y),

(hn, kn)
∞→ (h, k), tn → 0 where xn, yn, x′n, y′n (and consequently x, y too) are of
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uniformly bounded variation,

1

tn

(∫
x′ndy′n −

∫
xndyn

)
∞→
∫
hdy +

∫
xdk. (6)

where the right hand side is a (supremum norm) continuous linear mapping in (h, k),
interpreted for k not of bounded variation by formal integration by parts. It is also
jointly continuous in (x, y) and (h, k). By an easier argument the integration mapping is
of course also supremum norm continuous on functions of uniformly bounded variation.
See Gill (1989, Lemma 3) or Gill, van der Laan and Wellner (1993) for more details.

In Dudley (1992) these techniques are related to so-called Young-integrals and it
is shown that it is not possible to strengthen the results to Fréchet differentiability; at
least, not with respect to the supremum norm.

Appendix on Hadamard differentiability.

Here we briefly give definitions of Hadamard differentiability and continuous Hadamard
differentiability, see Gill (1989) for further background.

Let B and B′ be normed vector spaces, and φ a mapping from E ⊆ B to B′.
Think for instance of spaces of interval functions under the supremum norm, and the
product-integral mapping acting on bounded variation additive interval functions. First
we describe a general notion of differentiability of φ at a point x ∈ E, then specialize to
Fréchet, Hadamard and Gâteaux differentiability, and finally give some special proper-
ties of Hadamard differentiability.

Let dφ(x) be a bounded linear map from B to B′. This can be considered as the
derivative of φ if for x′ close to x, φ(x′) can be approximated by φ(x) +dφ(x) · (x′−x).
(We write dφ(x) · h rather than dφ(x)(h) to emphasize the linearity of the mapping).
Let S be a set of subsets of B. Then we say φ is S-differentiable at x with derivative
dφ(x) if for each H ∈ S, (1/t)

(
φ(x + th) − φ(x) − tdφ(x) · h

)
converges to 0 ∈ B′ as

t→ 0 ∈ IR uniformly in h ∈ H where x+ th is restricted to lie in the domain of φ.
If one takes S to be respectively the class of all bounded subsets of B, all compact

subsets, or all singletons, then S-differentiability is called Fréchet, Hadamard or Gâteaux
differentiability, or bounded, compact or directional differentiability. Clearly Fréchet dif-
ferentiability is the strongest concept (requires the most uniformity) and Gâteaux the
weakest; Hadamard is intermediate. A most important property of Hadamard differen-
tiabilty is that it supports the chain rule: the composition of differentiable mappings is
differentiable with as derivative the composition of the derivatives. Hadamard differen-
tiability is in an exact sense the weakest notion of differentiability which supports the
chain rule.

Equivalent to the definition just given of Hadamard differentiability is the following:
for all sequences of real numbers tn → 0 and sequences hn → h ∈ B,

1

tn

(
φ(x+ tnhn) − φ(x)

)
→ dφ(x) · h,

where again dφ(x) is required to be a continuous linear map from B to B′. If one
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strengthens this by requiring also that for all sequences xn → x

1

tn

(
φ(xn + tnhn) − φ(xn)

)
→ dφ(x) · h,

then we say φ is continuously Hadamard differentiable at x.
In section 6 we will give a first statistical application of this concept, a functional

version of the delta method: weak convergence of an empirical process carries over to
compact differentiable functionals of the empirical distribution function. Later (section
11) we will also mention applications in bootstrapping: the bootstrap of a compactly dif-
ferentiable function of an empirical distribution works in probability, under continuous
compact differentiabilty it works almost surely. Another application is in asymptotic
optimality theory: compactly differentiable functionals of efficient estimators are also
efficient (van der Vaart, 1991a).

5. Nelson-Aalen, Kaplan-Meier, Aalen-Johansen.

Censored survival data can sometimes be realistically modelled as follows. In the back-
ground are defined unobservable positive random variables

T1, . . . , Tn ∼ i.i.d. F ; independent of

C1, . . . , Cn ∼ i.i.d. G.

What one observes are, for i = 1, . . . , n:

T̃i = min(Ti, Ci) and ∆i = 1{Ti ≤ Ci}.

This is known as the (standard or usual) random censorship model. We suppose F
is completely unknown and the object is to estimate it, or functionals of it, using
the observed data. The Ti are called survival times and the Ci censoring times; the
T̃i are censored survival times with censoring indicators ∆i. We occasionally use the
notation T̃(i) for the ith censored observation in order of size, so that T̃(n) is the largest
observation. We let ∆(1), . . . ,∆(n) be the corresponding censoring indicators; in the
case of tied observations we take the uncensored (∆i = 1) before the censored (∆i = 0).
So ∆(n) = 0 if and only if the largest observation, or any one of the equal largest
observations if there are several, is censored.

The censoring distribution G may be known or unknown, and sometimes the Ci are
observed as well as the T̃i,∆i. For instance, suppose patients arrive at a hospital with
arrival times Ai according to a Poisson process during the time interval [0, τ ]; suppose
each patient on arrival is immediately treated and the treatment remains effective for
a length of time Ti; suppose the patients are only observed up to time σ > τ . From
arrival this is a maximum length of time Ci = σ − Ai. If the process of arrivals has
constant intensity then conditional on the number of arrivals we have a random censoring
model with observable Ci drawn from the uniform distribution on [σ − τ, σ]. With an
inhomogenous arrival process with unknown intensity, conditional on the number of
arrivals we still obtain the random censorship model with observable Ci but now with
unknown G.

One may want to condition on the observed Ci, turning them into a collection of
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known but varying constants; or allow them to be dependent of one another or have
varying distributions. Certain kinds of dependence between the censoring and survival
times are possible without disturbing some of the analysis we will make. However for
the most part we will work in the i.i.d. model described above. For a discussion of many
censoring models occurring in practice see chapter III of ABGK.

Write (T̃ ,∆) and (T, C) for a generic observation and its unobservable forbears.
Let Λ be the hazard function and S the survival function belonging to F . We do not
assume F or G to be continuous. We let τF and τG be the upper support endpoints of
F and G and τ = τF ∧ τG. We define the function y by

y(t) = (1 − F (t−))(1 −G(t−));

it is the left continuous version of the survival function of T̃ . Obviously we can have
no information from the data about F outside the time-interval {t : y(t) > 0} unless F
assigns mass zero to this interval in which case there is nothing else to know.

Intuitively the following seems a natural procedure for estimation of F : with dt =
[t, t+ dt) as before, estimate P(T ∈ dt |T ≥ t) = Λ(dt) by

Λ̂(dt) =
#{i : T̃i ∈ dt,∆i = 1}

#{i : T̃i ≥ t}
=

#failures in dt

#at risk at time t− . (1)

Then estimate Λ by Λ̂(t) =
∫ t

0
Λ̂(ds) and S by Ŝ(t) =

t

0(1− Λ̂(ds)); finally F̂ = 1− Ŝ.

A rationale for this procedure would be: given T̃i ≥ t, Ti and Ci are still independent;
moreover the events {T̃i ∈ dt,∆i = 1} and {Ti ∈ dt} are essentially the same event
since Ci strictly less than Ti but both times in the same interval dt can hardly happen.
The conditional probability of {Ti ∈ dt} is Λ(dt) so

P(T̃i ∈ dt,∆i = 1|T̃i ≥ t) ≈ Λ(dt)

motivating (1).
The estimator is a maximum likelihood estimator in some sense, whether or not

G is known. Think of the T̃i as being random times and consider how the data grows
in time: from one moment to the next there can be some failures, we can see which
observations i these belong to, then there can be some censorings and again we can
see which observations were involved. Correspondingly, write the likelihood of the n
observations as

t

P(#failures in dt|past) ·

· P(which failures|past and preceding) · P(censorings in dt|past and preceding).

The last pair of factors does not involve F ; the first factor is a binomial probability,
#failures in dt being approximately binomially distributed with parameters #at risk
at time t−, Λ(dt), given the past. The maximum likelihood estimate of p given X ∼
bin(n, p) is p̂ = X/n. Now use transformation invariance to show F̂ is the maximum
likelihood estimator of F .
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The very informal argument given here is an example of the method of partial
likelihood, invented by Cox (1975) to justify a somewhat more elaborate (and then
rather controversial) estimation procedure in a similar but more complicated context
(the Cox, 1972, regression model). Even if the deleted factors in the likelihood had
depended on F , perhaps through some assumed relation between F and G, the idea is
that one may still delete them and use what is left for valid though perhaps not optimal
statistical inference.

The argument is also an example of the derivation of a non-parametric (i.e., infinite
dimensional) maximum likelihood estimator. There is a formal definition of this concept,
applicable for models like the present where there is no dominating measure and hence
no likelihood to maximize; and the estimator we have just derived is then maximum
likelihood. However statistical theory of such procedures is still at a rather primitive
level and for the moment it is not too important to rigourise the definitions. It is
worth pointing out though, that pursuing the likelihood idea further one can write
down observed information based estimators of covariance structure which turn out to
be asymptotically correct; and that the estimators turn out to have all the asymptotic
optimality properties one could hope for. See ABGK section IV.1.5, Gill and van der
Vaart (1993) for an attempt to connect these facts together.

The estimators we have just written down have a long history and are the basis
of some of the most frequently used techniques in medical statistics. As we shall see
they have elegant structure and some beautiful properties. Surprisingly it took a long
time to get these properties well mapped out; for instance, the natural version of the
Glivenko-Cantelli theorem for F̂ was only obtained in 1991, published 1993, (Stute and
Wang), and this was not for want of trying.

The estimators Ŝ of the survival function and F̂ of the distribution function were
introduced by Kaplan and Meier (1958); apart from being named after them the es-
timator is also called the product-limit estimator. N. Kaplan and P. Meier actually
simultaneously and independently submitted papers to the Journal of the American
Statistical Association introducing the estimator and their published, joint paper was
the result of the postal collaboration which came out of this coincidence. There are
precursors in the actuarial literature, see especially Böhmer (1912). The usual formula
for the estimated variance of the estimator is affectionately called Major Greenwood’s
formula (Greenwood, 1926).

It took till 1974 before the first rigorous large sample theory was established for
the estimator (Breslow and Crowley, 1974; Meier 1975). These authors confirmed con-
jectures of Efron (1967), another of whose contributions was to introduce the notion
of self-consistency which is important when thinking of the Kaplan-Meier estimator
as a nonparametric maximum likelihood estimator (NPMLE); see section 13. We shall
demonstrate Breslow and Crowley’s method though streamlined through use of product-
integration methods, and through using the idea of the functional delta-method (com-
pact differentiability). Weak convergence on the whole line, for which martingale and
counting process methods were needed (introduced by Aalen, 1975), was established by
this author in 1980, 1983; and as just mentioned, the proper Glivenko-Cantelli theorem
had to wait till Stute and Wang (1993). We give a martingale version of that theorem
in section 8.
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The estimator Λ̂ of the hazard function was introduced independently by Altschuler
(1970) and Nelson (1969) and generalised greatly by Aalen (1972, 1975, 1976, 1978).
It is now known as the Nelson-Aalen estimator. One of the generalizations is in the
statistical analysis of censored observations from Markov processes. Suppose a number
of particles move according to an inhomogeneous, finite state space Markov process;
sometimes they are under observation, sometimes removed from observation. For each
pair of states i 6= j estimate the intensity measure Qij of moving from state i to state
j by

Q̂ij(dt) =
#i→ j transitions observed in dt

#observed at risk for i→ j at time t− ;

the number in the denominator is the number of particles observed to be in state i
at time t−. Put these together to form matrices Q̂, and product-integrate to form
estimators of transition matrices P̂ . The Q̂ij are ‘just’ generalised Nelson estimators
for the hazard of the i → j transition, treating other transitions as censorings. Note
that in this case the ‘number at risk’ can also grow through particles entering state i
from other states (or elsewhere), whereas in the ‘censored survival data’ situation it is
monotonically decreasing.

These estimation techniques were introduced by Aalen and Johansen (1978), com-
bining Aalen’s (1975) earlier developed martingale methods with tools from product-
integration. The present author was able to extract from this the martingale approach
to the Kaplan-Meier estimator (Gill, 1980, 1983), though neglecting the connections
with product-integration.

6. Asymptotics for Kaplan Meier: empirical processes.

We give in this section a first approach to studying the large sample properties of
the Kaplan-Meier estimator. This approach uses modern empirical process theory and
the analytic properties (compact differentiability) of the product-integration (and ordi-
nary integration) operations given in section 4. The idea is very simple: consider the

Kaplan-Meier estimator as a functional of the empirical distribution of the data (T̃i,∆i),
i = 1, . . . , n, as represented by its empirical distribution function. The empirical distri-
bution, minus the true, and multiplied by square root of n, converges in distribution to a
certain Gaussian process (the celebrated Donsker theorem). The functional which maps
empirical distribution function to Kaplan-Meier estimator is compactly differentiable,
being the composition of a number of compactly differentiable ingredients (analysed in
section 4). Now a generalised version of the delta method, which states that asymptotic
normality of a standardized statistic n1/2(Xn − x) carries over to asymptotic normality
of n1/2(φ(Xn) − φ(x)) for any function φ differentiable at x, gives weak convergence of

n1/2(F̂ − F ). Modern empirical process theory being rather elaborate, this approach
does involve a lot of technical machinery. However once in working, it delivers a lot of
results; in particular bootstrap and efficiency results and multivariate generalizations.

The second approach, introduced in section 7 and further developed in subsequent
sections, uses modern (continuous time) martingale methods, again depending on a
very elaborate theory. Once the apparatus is set up the results are got very easily
and sometimes in stronger versions than by the empirical process approach. Both



27

approaches can equally well be used to study the Aalen-Johansen estimator of the
transition probabilities of an inhomogenous Markov process.

Presenting both approaches make it convenient to introduce two sets of notations,
so let us first make these clear. For the empirical process approach we let F 1

n be the

empirical subdistribution function of the T̃i with ∆i = 1; F̃n is the empirical distribution
function of all the T̃i. For the martingale approach we let N be the process counting
observed failures and Y be the process giving the number at risk. So:

N(t) = #{i : T̃i ≤ t,∆i = 1},
Y (t) = #{i : T̃i ≥ t},

which makes

F 1
n(t) =

1

n
N(t),

1 − F̃n(t−) =
1

n
Y (t).

Recall that we have defined Λ̂ =
∫

dN/Y and 1− F̂ = (1− dΛ̂) = Ŝ. Integration and
product-integration here define functions of t by integrating over all intervals (0, t]. We

will later see that in the martingale approach a key for understanding properties of F̂−F
is that M = N −

∫
Y dΛ is a zero mean, square integrable martingale with predictable

variation process 〈M〉 given by 〈M〉 =
∫
Y (1 − ∆Λ)dΛ where ∆Λ(t) = Λ({t}) denotes

the atoms of Λ.
From empirical process theory we know (by the Glivenko-Cantelli theorem) that

F 1
n and F̃n converge uniformly almost surely for n → ∞ to their expectations F 1 =∫
(1 − G−)dF and F̃ = 1 − (1 − F )(1 − G). The integral here denotes the function

obtained by integrating over [0, t] for each t, and the subscript minus sign denotes the

left continuous version. Note that dF 1/(1− F̃−) = dF/(1−F−) = dΛ on {t : y(t) > 0};
recall y = (1 − F̃−), and 1 − F = (1 − dΛ).

We can write now

1 − F̂n =
(
1 − dF 1

n

1 − F̃n−

)
.

This can be thought of as the composition of three mappings:

(F 1
n , F̃n) 7→

(
F 1

n ,
1

1 − F̃n

)
(1)

7→
(∫ ( 1

1 − F̃n−

)
dF 1

n

)
(2)

7→
(

1 − d
(∫ ( 1

1 − F̃n−

)
dF 1

n

))
. (3)

If we fix σ such that y(σ) > 0 and consider the mappings as applying always to functions
on the interval [0, σ] then we saw in section 4 that the third of these mappings (product-
integration) is supremum norm continuous at functions of uniformly bounded variation;
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we also indicated the same result for the second mapping (ordinary integration). The
first mapping (‘one over one minus’) is trivially supremum norm continuous at pairs
of functions whose second component is uniformly bounded away from zero. This is
satisfied (for n → ∞) by the restriction to [0, σ] where y(σ) > 0. Monotonicity makes
the bounded variation condition (asymptotically) easily true.

Applied to the ‘true distribution functions’ (F 1, F̃ ) on the interval [0, σ] the map-
pings yield the true survival function 1−F . Glivenko-Cantelli and continuity therefore
give us the strong uniform consistency of the Kaplan-Meier estimator: F̂

∞→ F al-
most surely where the convergence is with respect to the supremum norm on [0, σ] and
y(σ) > 0.

With martingale methods we will later extend this (in section 8) to uniform con-
vergence simply on {t : y(t) > 0}, the largest possible interval.

We now turn to asymptotic normality of n
1
2 (F̂ − F ). As we mentioned above we

will obtain this by the delta method, in other words a first order Taylor expansion.
Before going into the more formal side of this we point out that it is quite easy to
work out, by an informal Taylor expansion, what the answer should be. Suppose the
distributions under consideration are discrete; the integrals and product integrals in (1)–
(3) are now just finite sums and products, involving multinomially distributed numbers
of observations taking each possible value. Carry out a first order Taylor expansion to
approximate F̂ − F by an expression linear in these variables. The result will again
include sums and products which can be rewritten as integrals and product-integrals.
This answer will also be correct for the general (non-discrete) case (this is actually a
theorem!).

Quite some work is involved, especially to get the final result in a nice form; though
several short cuts are possible if one knows where one is going. One obtains

F̂ (t) − F (t) ≈ 1

n

n∑

i=1

IC((T̃i,∆i);F ; t)

where the so-called influence curve for the Kaplan-Meier estimator is given by the zero-
mean random variable

IC((T̃ ,∆);F ; t)

= (1 − F (t)

(
1{T̃ ≤ t,∆ = 1}

(1 − F (T̃ ))(1 −G(T̃−))
−
∫ T̃∧t

0

F (ds)

(1 − F (s))(1 − F (s−))(1 −G(s−))

)
.

Our aim is to show that the approximate equality here has an exact interpretation
as asymptotic equivalence (uniformly in t in certain intervals) with a remainder term

of order oP(n− 1
2 ). The asymptotic variance of the Kaplan-Meier estimator is just the

variance of the influence curve in one observation; see (5) below.
The mappings above are also compactly differentiable and this gives us weak con-

vergence of n1/2(F̂ − F ) in D[0, σ] from the Donsker theorem—weak convergence of(
n1/2(F 1

n − F 1), n1/2(F̃n − F̃ )
)
—together with the Skorohod-Dudley almost sure con-

vergence construction (a sequence converging in distribution can be represented by an
almost surely convergent sequence on a suitably defined probability space), as we will
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now show. In Gill (1989) this technique is presented as a functional version of the delta-
method. That paper used the weak convergence theory of Dudley (1966) as expounded
in Pollard (1984), based on the open ball sigma-algebra.

Here we use weak convergence in the sense of Hoffmann-Jørgensen (see Pollard,
1990, or van der Vaart and Wellner, 1993). This notion of weak convergence is sup-
posed to dispose with the measurability problems which plague general theories of weak
convergence, but still great care is needed! We will not dwell on matters of measurabil-
ity but refer to Wellner (1993) and van der Vaart and Wellner (1993) where the delta
method, based on the Hoffmann-Jørgensen weak convergence and compact differentia-
bility, is worked out in full detail. (These authors prefer to use a generalised continuous
mapping theorem rather than the almost sure construction to derive the delta method.
We have to agree that this is ultimately the more effective approach, but for sentimental
reasons we keep to the almost sure construction).

According to the Hoffmann-Jørgensen theory, we see the empirical process Zn =(
n1/2(F 1

n −F 1), n1/2(F̃n − F̃ )
)

as an element of the space of (pairs of) cadlag functions
on [0, σ] endowed with the supremum norm and the Borel sigma-algebra. As such it is
not measurable, but what must be the limiting process—a zero mean Gaussian process
with as covariance structure the same structure as that of the empirical—is measurable.
Weak convergence in the Donsker theorem (which is true in this context) and subsequent
steps means convergence of all outer expectations of continuous bounded functions of
the empirical process to the ordinary expectations of the same functions of the limiting
process.

The Skorohod-Dudley almost sure convergence construction is also available in this
set-up. We describe it here as a kind of coupling, i.e., the construction of a joint dis-
tribution on a product space with prescribed margins such that given random variables
originally defined on the components of the product are as close together as possible. Let
Zn be a sequence of (possibly non-measurable) random elements converging in distribu-
tion to a measurable process Z in the sense just described. Suppose the Zn are defined
on probability spaces (Ωn,Fn,Pn) and Z on (Ω,F ,P). Form the product of all these
spaces together with (the unit interval, Borel sets, Lebesgue measure). Let πn denote
the coordinate projection from the product space to its n’th component (and define π

similarly). Then according to the construction there exists a probability measure P̃ on
the big product space whose projections onto the components of the product are just
the original Pn and P; even more, outer expectations and probabilities computed on the
product space and computed on the components coincide, or, formally: (P̃)∗π−1

n = P∗
n.

(One says that the coordinate projections πn are perfect mappings in that they preserve

outer as well as ordinary probabilities). Under P̃ the Zn now converge almost uniformly
to Z: this means that the distance from Zn to Z, which may not be measurable, is
bounded by a measurable sequence converging almost surely to zero.

Now we show how a delta-method theorem follows from combination of the Skor-
ohod-Dudley construction and the definition of compact differentiability. Let Xn be
elements of a normed vector space such that

Zn = an(Xn − x)
D→ Z
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in the sense of Hoffmann-Jørgensen, where an → ∞ is a sequence of real numbers. Let φ
be a function from this space to another normed vector space, compactly differentiable
at x in the sense that for all tn → 0 (real numbers) and all hn → h,

t−1
n (φ(x+ tnhn) − φ(x)) → dφ(x).h

where dφ(x) is a continuous linear map between the two spaces. By the Skorohod-
Dudley almost sure convergence construction we may pretend the Zn converge almost
uniformly to Z. Now apply the definition of differentiability with x as given, tn = a−1

n ,
hn = Zn, h = Z, so that x + tnhn = x + a−1

n an(Xn − x) = Xn. We obtain that
an(φ(Xn) − φ(x)) → dφ(x) · Z and also that the difference between an(φ(Xn) − φ(x))
and dφ(x)·Zn converges to zero; both these convergences hold almost surely but a further
short argument using measurability of the limit process and continuity of the derivative
(van der Vaart and Wellner, 1993, Theorem 1.54 (ii)) shows that the convergence in
fact holds almost uniformly. Almost uniform convergence implies convergence of outer
expectations and hence weak convergence, giving the required results:

an

(
φ(Xn) − φ(x)

) D→ dφ(x) · Z

and moreover
an

(
φ(Xn) − φ(x)

)
− dφ(x) · Zn

P→ 0.

(The last convergence of a possibly non-measurable sequence is actually ‘almost uni-
formly’).

A crucial point is that compact differentiability as defined here satisfies the chain
rule (in fact it is the weakest form of differentiabilty to do so). Our three mappings
above are each compactly differentiable (the first by a simple calculation, the second
two by section 4).

The conclusion is therefore that n1/2(F̂−F ) converges weakly to a certain Gaussian
process, obtained by applying the derivatives of the three maps above (continuous linear

maps) one after the other to the limit of the empirical process (Z1
n, Z̃n) =

(
n1/2(F 1

n −
F 1), n1/2(F̃n−F̃ )

)
. Also n1/2(F̂−F ) is asymptotically equivalent to these maps applied

to the empirical process itself. (All this, with respect to the supremum norm, on a given
interval [0, σ]). Now the map (x, y) 7→ (x, 1/(1 − y)) = (x, u) has derivative (h, k) 7→
(h, k/(1−y)2) = (h, j); (x, u) 7→

∫
(u−dx) = v has derivative (h, j) 7→

∫
j−dx+

∫
u−dh =

ℓ; and for scalar v the mapping v 7→ (1−dv) has derivative ℓ 7→ −
∫

(1−dv)dℓ (1−
dv) = − (1 − dv)

∫
(1 − ∆v)−1dℓ where ∆v = v − v−.

Applied to (h, k) = (Z1
n, Z̃n) at the point (F 1, F̃ ) we obtain (h, j) = (Z1

n, Z̃n/(1 −
F̃ )2). The next step gives us ℓ =

∫
(Z̃n−/(1 − F̃−)2)dF 1 +

∫
(1/(1 − F̃−))dZ1

n. Using

the fact (1 − F̃−)−1dF 1 = dΛ this simplifies to ℓ =
∫

(1 − F̃−)−1(dZ1
n + Z̃n−dΛ). The

final stage therefore takes us to − (1 − dv)
∫
(1 − ∆v)−1dℓ =

−(1 − F )

∫
1

(1 − F̃−)(1 − ∆Λ)
(dZ1

n + Z̃n−dΛ). (4)

We can get rid of the leading minus sign by taking one more step from 1− F̂ to F̂ . Now
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one can calculate the asymptotic covariance structure of n1/2(F̂ − F ), since it must be

the same as that of (1−F )
∫
(dZ1

1 + Z̃1−dΛ)/((1− F̃−)(1−∆Λ)); a tedious calculation
(which we leave for the reader to carry out after studying section 7, where martingale
methods make it very simple) shows that the covariance of this process evaluated at the
time points s and t is

(1−F (s))(1−F (t))

∫ s∧t

0

dΛ

(1 − ∆Λ)2y
= (1−F (s))(1−F (t))

∫ s∧t

0

dF

(1 − F )2(1 −G−)
.

(5)
This means that the integral in (4) (i.e., dropping the factor −(1 − F )) has un-

correlated increments. Since the limiting process is Gaussian with zero mean, we have
that n1/2(F̂ − F ) is asymptotically distributed as 1 − F times a process with inde-
pendent, zero mean, increments; hence a martingale. This raises the question whether
n1/2(F̂ − F )/(1− F ) has the martingale property before passing to the limit, and if so
whether that can be used to give an alternative proof. To connect more closely with
that approach, we rewrite (4) by noting that on [0, σ]

n1/2(dZ1
n + Z̃n−dΛ)

= n(dF 1
n − (1 − F̃n−)dΛ) − n(dF 1 − (1 − F̃−)dΛ)

= dN − Y dΛ :

thus n1/2(F̂ − F ) has been shown to be asymptotically equivalent to

n− 1
2 (1 − F )

∫
1

(1 − ∆Λ) y
(dN − Y dΛ) (6)

and it will turn our that the integral here is exactly a martingale. Note that this
approximation is identical to the approximation in terms of the influence curve IC given
earlier in this section.

To sum up: n1/2(F̂ −F )/(1−F ) is asymptotically distributed as a Gaussian mar-
tingale, and even asymptotically equivalent to a process which, for each n, is exactly a
martingale in t; provided we restrict attention to an interval [0, σ] such that y(σ) > 0.
Now martingale properties can be a powerful tool. It turns out that, up to a minor mod-
ification, n1/2(F̂ −F )/(1−F ) is exactly a martingale, for reasons intimately connected
again with the Duhamel equation and with a basic martingale property connecting the
hazard measure to a survival time. The martingale approach can be used, via the mar-
tingale central limit theorem, to give an alternative and in many ways more transparent
derivation of asymptotic normality of n1/2(F̂ −F )/(1−F ). Moreover it yields a host of
further results, in particular connected to the extension of the weak convergence result
we have just obtained to weak convergence on a ‘maximal interval’, namely the closure
of {t : y(t) > 0}. This is essential if we want to establish large sample properties of
statistical procedures based on the Kaplan-Meier estimator at all possible time values;
e.g., a Kaplan-Meier based estimate of the mean, or confidence bands for all time-values.

In the next section we will establish the martingale connections and use them in
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section 8 to prove one main result: the Glivenko-Cantelli theorem

sup
{t:y(t)>0}

|F̂ − F | → 0 almost surely as n→ ∞.

Amazingly, this basic property of Kaplan-Meier was first established only very recently
by Stute and Wang (1993). We follow their elegant proof, but replace their exten-
sive combinatorial calculations by some structural observations involving the Duhamel
equation and martingale properties.

In section 9 we will sketch weak convergence results, with statistical applications.

7. The martingale connection.

Recall the following set-up:

T1, . . . , Tn ∼ i.i.d. F ; independent of

C1, . . . , Cn ∼ i.i.d. G.

T̃i = min(Ti, Ci), ∆i = 1{Ti ≤ Ci}.
N(t) = #{i : T̃i ≤ t,∆i = 1},
Y (t) = #{i : T̃i ≥ t}.

Λ̂(t) =

∫ t

0

N(ds)

Y (s)
,

1 − F̂ (t) =

t

0

(1 − Λ̂(ds)).

We assume F (0) = G(0) = 0; let Λ be the hazard measure corresponding to F ; and
define the maximal interval on which estimation of F is possible by

T = {t : F (t−) < 1, G(t−) < 1}

together with its upper endpoint
τ = sup T .

So T = [0, τ) or [0, τ ] and 0 < τ ≤ ∞.
The source of many striking properties of the Kaplan-Meier estimator is the Duh-

amel equation together with the fact that the process M defined by

M(t) = N(t) −
∫ t

0

Y (s)Λ(ds), 0 ≤ t ≤ ∞,

is a (square integrable, zero mean) martingale on [0,∞].
Of course the definition of a martingale involves fixing a filtration, that is, a col-

lection of sub σ-algebras of the basic probability space on which everything so far is
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defined, which is increasing and right continuous:

Fs ⊆ Ft, s ≤ t,

Ft =
⋂

u>t

Fu.

The martingale has to be adapted to the filtration, i.e.,

M(t) is Ft-measurable for each t.

The martingale property is then

E(M(t)|Fs) = M(s) ∀s ≤ t. (1)

The minimal filtration which can be taken here is obviously Ft = σ{M(s) : s ≤ t}.
However any larger filtration still satisfying (1) can be taken here. A rather natural
choice is

Ft = σ{T̃i ∧ t, 1{T̃i ≤ t},∆i1{T̃i ≤ t}; i = 1, . . . n}. (2)

Thus Ft-measurable random variables only depend in a strict sense on ‘the data available
at time t’: the information as to whether or not each T̃i is less than or equal to t, and
if so, its actual value and the value of ∆i.

(We mention briefly to worried probabilists: usually one also assumes that a filtra-
tion is complete in the sense that F0 contains all P-null sets of the underlying probability
space. However the assumption is not really needed: one can if necessary augment an
incomplete filtration with null sets, invoke standard theorems of stochastic analysis, and
then drop the null sets again, while choosing suitable versions of the processes one is
working with; see Jacod and Shiryaev, 1987).

The claimed martingale property is intuitively easy to understand. It really says:
given Ft− (defined as Ft in (2) but with ‘≤’ replaced by ‘<’) there are Y (t) observations
still to be made. The conditional probability of an uncensored observation in [t, t+ dt)
is Λ(dt). The expected number is therefore Y (t)Λ(dt), thus E(N(dt)|Ft−) = Y (t)Λ(dt)
or E(M(dt)|Ft−) = 0. Therefore M(dt) forms a continuous version of a sequence of
martingale differences.

To actually prove the martingale property (1) is a different matter. There are
many ways to do it, ranging from direct calculation to the use of general theorems on
the compensator of a counting process, see Jacod (1975), ABGK section II.7, or section
10 below. Intermediate approaches use some calculation and some stochastic analysis.
Since we need to introduce some of that anyway, here is such a hybrid proof. For an
extensive introduction to the results from stochastic analysis which we need see Chapter
II of ABGK.

The main tool we use is the following: the integral of a predictable process with
respect to a martingale is again a martingale, under appropriate integrability conditions.
Here is a suitable version of the theorem for our purposes.

Let H be a predictable process: this means that H = H(t, ω) is measurable with
respect to the σ-algebra on [0,∞) × Ω generated by the adapted, left continuous pro-
cesses. Let M be a martingale with paths of bounded variation on [0, t] for each t <∞.
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If E
∫ t

0
|H(s)||M(ds)| < ∞ for each t then the process t 7→

∫ t

0
HdM is again a mar-

tingale on [0,∞). Intuitively, predictability means that H(t) is Ft−-measurable. But
then E(H(t)M(dt)|Ft−) = H(t)E(M(dt)|Ft−) = 0 so

∫
HdM is the continuous time

analogue of a sum of martingale differences.
This theorem can be distilled from any standard account of stochastic integration

theory, as part of a rather deep and complex theory. A fairly elementary proof is given
by Fleming and Harrington (1991).

Now we prove the martingale property (1). Consider the case n = 1 and C = C1 =
∞. Thus N(t) = 1{T ≤ t}, Y (t) = 1{T ≥ t}, where T = T1 ∼ F . First we show
EM(∞) = 0. This follows from N(∞) = 1 a.s. and the fact that

E

(∫ ∞

0

Y (t)Λ(dt)

)
=

∫ ∞

0

P(T ≥ t)
F (dt)

P(T ≥ t)
= 1.

Next consider M(∞) − M(t); we show that its conditional expectation given the σ-
algebra Ft = σ(T ∧ t, 1{T ≤ t}) is zero. The conditional expectation can be considered
separately on the event {T ≤ t} and on the event {T > t}. On the former event
M(∞)−M(t) is identically zero so there is nothing more to check. On {T > t} we can
compute the conditional expectation given Ft simply as a conditional expectation given
T > t. Also, on this event, M(∞) −M(t) = 1 −

∫∞

t
1{T ≥ s}Λ(ds). But given T > t,

T has hazard measure Λ(ds)1(t,∞). So our previous computation for the case t = 0 also
applies to this case: we have proved

E
(
M(∞)|Ft

)
= M(t).

One can check that EM(∞)2 < ∞ so M is even a square integrable martingale. This
also follows from counting process theory since M is a compensated counting process.

Now we turn to the general case. Introduce the larger filtration

Gt = σ{Ti ∧ t, 1{Ti ≤ t}, Ci ∧ t, 1{Ci ≤ t}}.

By independence of all Ti’s from one another and from all the Ci, we have that the
processes M0

i defined by

M0
i (t) = 1{Ti ≤ t} −

∫ t

0

1{Ti ≥ s}Λ(ds)

are all martingales with respect to (Gt). Let Hi(t) = 1{Ci ≥ t}. The processes Hi are
left continuous and adapted, hence predictable; they are also bounded. Furthermore, it
is easy to check E

∫∞

0
|Hi(s)||M0

i (ds)| < ∞ and therefore
∫
HidM

0
i is a martingale for

each i. But
∑

i

∫
HidM

0
i = M so this is also a martingale, with respect to the filtration

(Gt). Since M is also adapted to the smaller filtration (Ft), it remains a martingale
with respect to this filtration too.

To a square integrable martingale M one can associate its predictable variation
process 〈M〉: this is the unique, nondecreasing, predicable process such that M2 − 〈M〉
is again a martingale. Intuitively, 〈M〉 is characterised by

〈M〉(dt) = E
(
M(dt)2

∣∣ Ft−

)
.
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Think of N(dt) as being conditionally bin(Y (t),Λ(dt)) distributed given Ft−; since
M(dt) equals N(dt) minus its conditional expectation, it is plausible that 〈M〉(dt) =
Y (t)Λ(dt)(1 − Λ(dt)). In fact it is true that

〈M〉(t) =

∫ t

0

Y (s)(1 − ∆Λ(s))Λ(ds).

The result can be checked by a similar procedure to the one used for the martingale
property, using some further results from stochastic calculus. First one must check the
result for the case n = 1, C1 = ∞. This can be done by direct calculation (or by appeal
to a general result on counting processes described in the next paragraph). Next we
use that by independence, the predictable covariation processes 〈M0

i ,M
0
j 〉 for i 6= j

are all zero; the predictable covariation process of two martingales M and M ′ is the
unique predictable process with paths of locally bounded variation whose difference
with the product MM ′ is a martingale. Finally we use that if H is predictable, M
a square integrable martingale, and E

∫∞

0
H2d〈M〉 < ∞, then

∫
HdM is also square

integrable, and predictable variation and covariation may be calculated by the rules
〈
∫
HdM〉 =

∫
H2d〈M〉, 〈

∫
HdM,

∫
H ′dM ′〉 =

∫
HH ′d〈M,M ′〉.

Slightly less work can be done by using general properties of counting processes.
Full details of the following outline of a proof can be found in ABGK section II.4. Let N
be a counting process: a càdlàg process which is integer valued, zero at time zero, and
with jumps of size +1 only; for instance the present N in the case n = 1. A counting
process has a compensator, that is an increasing predictable process A such that M =
N − A is a local martingale. The word local means that there exists an increasing
sequence of stopping times Tn converging almost surely to ∞ such that the stopped
process MTn defined by MTn(t) = M(Tn ∧ t) is a martingale for each n. Now consider
M2 = 2

∫
M−dM +

∫
∆MdM . The first term is the stochastic integral of a predictable

process with respect to a local martingale so again a local martingale. We further write∫
∆MdM = N−2

∫
∆AdN+

∫
∆AdA. Since

∫
∆AdM =

∫
∆AdN−

∫
∆AdA and ∆A

is again a predictable process, combining terms shows that
∫

∆AdM −A+
∫

∆AdA is a
local martingale. Thus M2−

∫
(1−∆A)dA is a local martingale or 〈M〉 =

∫
(1−∆A)dA.

With these tools we can now quickly derive some important martingale properties
of F̂ and Λ̂. Define

J(t) = 1{Y (t) > 0}

J(t)

Y (t)
=





0 if Y (t) = 0

1

Y (t)
otherwise.

Let T̃(n) = maxi T̃i and let Λ∗ be the hazard measure Λ∗(dt) = Λ(dt)1
[0,T̃(n)]

.
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Now we can write

Λ̂ − Λ∗ =

∫
dN

Y
−
∫
JdΛ

=

∫
J

Y
dN −

∫
J

Y
Y dΛ

=

∫
J

Y
dM.

Since J/Y is bounded and predictable and M is square integrable, Λ̂ − Λ∗ is a square

integrable martingale with 〈Λ̂ − Λ∗〉 =
∫
(J/Y )(1 − ∆Λ)dΛ.

Let 1 − F ∗ = (1 − dΛ∗); equivalently

F ∗(t) = F (t ∧ T̃(n)).

Note that Λ∗(T(n)) <∞ almost surely and Λ̂(∞),Λ∗(∞) <∞ almost surely.
By the Duhamel equation, for t ∈ [0,∞],

(
1 − F̂ (t)

)
−
(
1 − F ∗(t)

)
=

−
∫ t

0

s−

0

(
1 − dΛ̂(du)

)(
Λ̂(ds) − Λ∗(ds)

)
t

s

(
1 − Λ∗(du)

)

so dividing by 1 − F ∗(t),

1 − F̂ (t)

1 − F ∗(t)
= 1 −

∫ t

0

s−

0
(1 − Λ̂(du))

s

0
(1 − Λ(du))

J(s)

Y (s)
M(ds)

= 1 −
∫ t

0

1 − F̂−

1 − F

J

Y
dM.

This gives us that (1 − F̂ )/(1 − F ∗) − 1 is a zero mean, square integrable martingale

on [0, t] for any t such that F (t) < ∞, with 〈(1 − F̂ )/(1 − F ∗) − 1〉 =
∫
((1 − F̂ )/(1 −

F ))2(J(1 − ∆Λ)/Y )dΛ.

Exercise. Compute the asymptotic variance (6.5) of the Kaplan-Meier estimator by
use of stochastic analysis and the approximation (6.6).

In the next section we show how the delicate property of strong uniform consistency
follows from this martingale representation and in the section after that we take another
look at weak convergence properties from the martingale point of view.
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8. Glivenko-Cantelli for Kaplan-Meier.

The analytic properties of the mappings ‘integration’ and ‘product-integration’ enabled
us in section 6 to establish the following strong consistency result:

sup
t∈[0,σ]

|F̂ (t) − F (t)| → 0 a.s. as n→ ∞ (1)

for any σ ∈ T = {t : F (t−) < 1, G(t−) < 1}. It is now natural to ask: can we replace
the interval [0, σ] in (1) by the ‘maximal interval’ T ?

It has taken a surprisingly long time to resolve this basic question. Gill (1980) and
Shorack and Wellner (1986) give incorrect proofs (the former even for the simpler ‘in
probability’ result). J.-G. Wang (1987) at last gave a correct ‘in probability’ result and
Stute and J.-L. Wang (1993) finally settled the question, in the affirmative. Their ap-
proach was completely novel though actually based on a classical technique for proving
the ordinary Glivenko-Cantelli theorem. For the ordinary empirical distribution func-
tion Fn it is namely known that Fn(t) is a reverse martingale in n (t fixed) and Doob’s
martingale convergence theorem is now available. Stute and Wang (1993) discovered

that F̂ (t) (for fixed t) is a reverse supermartingale in n.
Here we present a simplified version of their proof, using the Duhamel equation

and other martingale properties (in t; n fixed) to replace their extensive combinatorial
calculations by a simple analysis of some basic structural features of the Kaplan-Meier
estimator. The fact that we have a reverse supermartingale and not a martingale (in

n) turns out to be really the same as the fact that in the last section, F̂ − F ∗ is a

martingale in t, making F̂ − F (dropping the star) into a supermartingale.
First we make some general comments on the problem, to indicate why it really is

a rather delicate question. If τ = sup T is such that τ ∈ T (so F (τ−) < 1, G(τ−) < 1)
then there is nothing more to prove. If τ /∈ T then either F (τ−) = 1 or G(τ−) = 1,
or both. The case F (τ−) = 1 can be handled by an easy monotonicity argument:

informally, once we have proved that F̂ is close to F on [0, σ] where σ is so close to τ

that F (σ) is very close to 1, then because F̂ is trapped between F̂ (σ) and 1 on (σ, τ),
it must also be close to F there. Formally:

sup
t∈T

|F̂ (t) − F (t)| ≤ max{ sup
t∈[0,σ]

|F̂ (t) − F (t)|, (1 − F (σ)) + |F̂ (σ) − F (σ)|}

≤ sup
t∈[0,σ]

|F̂ (t) − F (t)| + (1 − F (σ)).

This means that the only difficult case is the case: F (τ−) < 1, G(τ−) = 1. With
probability one in this case, all observations are strictly less than τ . The danger is that
for t close to τ where the ‘risk set’ {i : T̃i ≥ t} is rather small (e.g., of size 1,2,3,. . . ),

a failure occurs, so that Λ̂ makes a large jump (of size 1, 1
2 , 1

3 , . . . ) causing F̂ to make
a large jump from a value close to F (τ−) < 1 some appreciable fraction of the way
towards 1 (e.g., all the way, half the way, a third of the way, . . . ).

The in-probability result of J.-G. Wang (1987) is quite easy to obtain once we have
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obtained this insight. Note that by the Volterra equation

1 − F̂ (t) = 1 −
∫ t

0

(1 − F̂ (s−))Λ̂(ds)

it follows that the increment of F̂ over the interval (σ, τ) is less than Λ̂(τ−) − Λ̂(σ)

in the case of concern. But we saw that Λ̂ − Λ∗ is a martingale, which implies in the
relevant case F (τ−) < 1, G(τ−) = 1 that

E
(
Λ̂(τ) − Λ̂(σ)

)
= E

(
Λ∗(τ) − Λ∗(σ)

)

≤ Λ(τ−) − Λ(σ)

which can be made arbitrarily small by taking σ close enough to τ . Now Chebyshev’s
inequality shows that, uniformly in n, the nonnegative random variable Λ̂(τ) − Λ̂(σ) is
arbitrarily small, in probability, for σ close enough to τ , hence

lim
σ↑τ

sup
n

P
(
F̂ (τ) − F̂ (σ) > ε) = 0

for all ε > 0. Together with

sup
t∈[0,σ]

|F̂ (t) − F (t)| P→ 0

for each σ < τ , and limσ↑τ (F (τ−) − F (σ)) = 0, we obtain

sup
t∈[0,τ)

|F̂ (t) − F (t)| P→ 0.

Already a martingale property was involved here. Let us now look at the Stute-
Wang strong consistency proof. We do not distinguish between the different special
cases any more but give a single proof covering all cases.

The proof will in fact give much more. We will consider any measurable function
φ ≥ 0, with support in T , i.e., φ is zero outside T , and such that

∫∞

0
φdF < ∞, and

show that ∫ ∞

0

φdF̂ →
∫ ∞

0

φdF as n→ ∞ a.s. (2)

The integrals over [0,∞) can obviously everywhere be replaced by integrals over T .
Consider now φ equal to indicator functions 1[0,σ) and 1[0,σ]. We can find a countable
set of such indicator functions (e.g.: σ runs through all rationals and all jump points
of F in T , together with the point τ itself, though 1[0,τ ] is not included if τ /∈ T ) such

that convergence of
∫
φdF̂ to

∫
φdF for all such φ implies uniform convergence of F̂ to

F on T .
So we only have to consider from now on a sequence of random variables (indexed

by sample size n)
∫
T φdF̂ , φ with support in T , φ ≥ 0, and

∫
T φdF <∞. We will show

that this sequence is a nonnegative reverse supermartingale: inserting the variable n
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and dropping the range of integration T , this means

E

(∫
φdF̂n

∣∣∣∣
∫
φdF̂n+1,

∫
φdF̂n+2, . . .

)
≤
∫
φdF̂n+1. (3)

We also show that E(
∫
φdF̂n) ≤

∫
φdF for all n. Doob’s supermartingale convergence

theorem now implies that
∫
φdF̂n converges almost surely and in expectation to some

limiting random variable. However it is not difficult to see that the limit must lie
in the tail σ-field generated by the the sequence of observations (T̃n,∆n); therefore by
Kolmogorov’s zero-one law it must be non-random and equal to the limit of the expected
values of the sequence. (Or note that the limit is in the symmetric σ-field generated by
the observations hence non-random by the Hewitt-Savage zero-one law). Therefore the
required ∫

φdF̂n →
∫
φdF a.s.

will follow from the reverse supermartingale property (3) together with

E

(∫
φdF̂n

)
→

∫
φdF. (4)

We call proving (3) and (4) ‘establishing the reverse supermartingale property’ and
‘identifying the limit’ respectively. Stute and Wang (1993) used extensive and quite
different looking calculations (combinatorial versus analytic) to prove these two facts.
In fact it turns out that in both cases exactly the same martingale ideas can be used.
We start with ‘identifying the limit’.

Identifying the limit.

In the previous section we showed that the Duhamel equation for comparing 1 − F̂ to
1 − F could be written in terms of an integral with respect to the basic martingale M .
However we only got this martingale structure on the random time interval [0, T ] where

T = T̃(n)

due to problems of division by zero. In the previous section we got round this problem
by modifying F and looking at F ∗ instead: this is got from F by forcing its hazard
measure to be zero outside [0, T ]. This technique is the usual one and has been used by
many authors.

Here we propose a different trick: namely, instead of modifying F , let us modify
F̂ , or rather its hazard measure outside [0, T ], leaving F itself unchanged. One version
of this trick has been known for a long time (Meier, 1975; Mauro, 1985): given T ,
add to the data one uncensored observation from the distribution with hazard measure
Λ(dt)1(T,∞)(t). This is equivalent in some sense to forcing the largest observation to be
uncensored. Another version (Altshuler, 1970) is to add to the data an inhomogenous
Bernoulli process, started at time T , with intensity measure Λ(dt)1(T,∞)(t).

Rather than adding just one observation one could add many; in the limit, this
comes down to actually knowing Λ(dt)1(T,∞)(t). Hence the following
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Definition. 1 − F̃ is the survival function with hazard measure Λ̃ equal to Λ̂(dt) on
[0, T ], Λ(dt) on (T,∞).

If F̂ (T ) = 1 then Λ̂ terminates properly in an atom of size +1 and F̃ = F̂ . If

however F̂ (T ) < 1 then Λ̂ is finite and has no atom of size +1. However the hazard

measure Λ̃ corresponding to F̃ terminates in the same way as Λ at the same point.
We have the following properties of F̃ :

∗ F̂ and F̃ coincide on [0, T ]

∗ If F̂ (T ) = 1 then F̂ and F̃ coincide everywhere

∗ If F̂ (T ) < 1 then F̃ assigns mass 1 − F̂ (T ) somewhere in (T,∞).

Note that T satisfies almost surely Λ(T ) <∞, Λ̂(T ) <∞.

Now consider the Duhamel equation comparing F̃ to F , for t such that Λ(t) <∞:

(1 − F̃ (t)) − (1 − F (t)) = −
∫ t

0

(
1 − F̃ (s−)

)(
Λ̃(ds) − Λ(ds)

) t

s

(
1 − Λ(du)

)

= −
∫ t

0

1{Y (s) > 0}
(
1 − F̂ (s−)

)(
Λ̂(ds) − Λ(ds)

) t

s

(
1 − Λ(du)

)
.

If F terminates continuously, taking the limit as t tends to the termination point shows
that this result actually holds for all t. Finally, recalling Λ̂(ds) = N(ds)/Y (s) and
J(s) = 1{Y (s) > 0}, we can rewrite the identity as

(1 − F̃ (t)) − (1 − F (t)) = −
∫ t

0

(
1 − F̂ (s−)

) J(s)

Y (s)
M(ds)

t

s

(
1 − Λ(du)

)
. (5)

Now M is a square integrable martingale on [0,∞], M(0) = 0, and for given t the

integrand (1 − F̂ (s−))(J(s)/Y (s))
t

s
(1 − dΛ) is a bounded, predictable process (in s).

Therefore the right hand side of (5) is the evaluation at time t of a zero-mean martingale,
giving us:

EF̃ (t) = F (t) for all t ∈ [0,∞].

We turn now to integrals
∫∞

0
φdF̃ of measurable functions φ. Consider the class of

functions φ ≥ 0 such that

E

(∫ ∞

0

φdF̃

)
=

∫ ∞

0

φdF.

This class (i) contains all right continuous step functions with a finite number of jumps
and (ii) is closed under taking monotone limits, by an easy application (twice) of the
monotone convergence theorem. Therefore by the monotone class argument (see, e.g.,
Protter, 1980, ch. 1, Theorem 8) the class contains all nonnegative measurable functions.

From now on restrict attention to φ ≥ 0 with support in T and such that
∫
T
φdF <

∞. We will show that for such φ,

E

(∫
φdF̂

)
→

∫
φdF as n→ ∞.
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In fact since for any φ,
∫∞

0
φdF̂ =

∫∞

0
(φ1T )dF̂ almost surely, this result identifies the

limit of E
∫∞

0
φdF̂ as

∫
T φdF for arbitrary F -integrable φ.

Fix M < ∞ and σ ∈ T and define φσ,M = (φ ∧ M)1[0,σ]. Note the following
(remember, φ ≥ 0): ∫

φdF̂ ≤
∫
φdF̃

∫
φσ,MdF̃ ≤

∫
φdF̃

∫
φσ,MdF̃ =

∫
φσ,MdF̂ if T ≥ σ.

Whether or not T = T̃(n) ≥ σ, both sides of the last line are bounded by M ; and we

have P(T̃(n) ≥ σ) → 1 as n→ ∞. This gives us

E

(∫
φσ,MdF̂

)
≤ E

(∫
φdF̂

)
≤ E

(∫
φdF̃

)
=

∫
φdF and

E

(∫
φσ,MdF̂

)
= E

(∫
φσ,MdF̃

)
+ o(1) as n→ ∞

=

∫
φσ,MdF + o(1).

But for φ with support in T and
∫
φdF < ∞,

∫
φσ,MdF can be made arbitrarily close

to
∫
φdF by suitable choice of σ and M . Hence

E

(∫
φdF̂

)
→

∫
φdF as n→ ∞.

The reverse supermartingale property.

Consider n+ 1 observations T̃i,∆i, i = 1, . . . , n+ 1. Write T̃i:n, i = 1, . . . n and T̃i:n+1,

i = 1, . . . n + 1 for the ordered values of respectively T̃1, . . . , T̃n and T̃1, . . . , T̃n+1. Let
∆i:n and ∆i:n+1 denote the corresponding reordered ∆1, . . . ,∆n and ∆1, . . . ,∆n+1. In

case of tied values of the T̃i, we take the ∆i with value 1 before those with value 0.
From now on we write F̂n, Nn, Yn, Λ̂n and F̂n+1, Nn+1, Yn+1, Λ̂n+1 to distinguish

between statistics based on the first n and the first n + 1 observations. Note that F̂n

only depends on the (T̃i,∆i) through the (T̃i:n,∆i:n). This means that

Fn = σ{(T̃i:n,∆i:n), i ≤ n; (T̃i,∆i), i > n}

is a decreasing sequence of σ-algebras to which the sequence
∫
φdF̂n is adapted. The

reverse supermartingale property (3) would follow from

E

(∫
φdF̂n

∣∣∣∣ Fn+1

)
≤
∫
φdF̂n+1.

Since the (T̃i,∆i) for i > n+ 1 are independent of the others and not involved in F̂n or
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F̂n+1, this comes down to showing

E

(∫
φdF̂n

∣∣∣∣ T̃i:n+1,∆i:n+1, i = 1, . . . , n+ 1

)
≤
∫
φdF̂n+1. (6)

The key observation which will make this calculation really easy is the following
fact: the joint distribution of all the (T̃i:n,∆i:n), (T̃i:n+1,∆i:n+1) can be represented by
considering the first n pairs as the result of randomly deleting one of last n + 1. By
a random deletion we mean that the index i to be deleted is uniformly distributed on
{1, . . . , n+1}, independently of all the (T̃i:n+1,∆i:n+1). This means that the conditional

expectation in (6) can be computed, given the (T̃i:n+1,∆i:n+1), by averaging over all the

n+ 1 values of
∫
φdF̂n obtained by basing F̂n on each possible deletion of one element

from the (T̃i:n+1,∆i:n+1).
A quick proof of this fact (which is actually not completely trivial, especially when

F or G is not continuous) goes as follows. Replace n+1 by n for simplicity. The idea is
to think of throwing n observations into a bag. Taking them out at random one by one
does not change their joint distribution. The last one to come out is a random choice
of the ones in the bag to start with. Let X∗

1 , . . . , X
∗
n be i.i.d. random vectors from a

given distribution. Without loss of generality, assume this distribution has no atoms
(otherwise replace the X∗

i by pairs (X∗
i , Ui) where the Ui are independent and uniform

(0, 1) distributed). Let I1, . . . , In be a random permutation of 1, . . . , n, independent of
the X∗

i . Define
(X1, . . . , Xn) = (X∗

I1
, . . . , X∗

In
).

Now (X1, . . . , Xn) is again a random sample from the same given distribution. Moreover
the set of values {X1, . . . , Xn−1} of the first n − 1 observations is indeed obtained by
random deletion of one element from the set {X1, . . . , Xn} = {X∗

1 , . . . , X
∗
n}; namely in

the second representation of this set we delete the one labelled In.
The next idea is to note that the random deletion of one element from the set of

(T̃i:n+1,∆i:n+1), which can be thought of as n + 1 marked points along the line (some
of them perhaps at the same position), can be carried out sequentially, in discrete time.

Without ties this goes as follows: first decide whether or not to delete (T̃1:n+1,∆1:n+1),

with probabilty 1/(n + 1). If so, stop; if not, move on to (T̃2:n+1,∆2:n+1) and delete

it with probabilty 1/n; and so on. After k failed deletions, delete (T̃k+1:n+1,∆k+1:n+1)
with probabilty 1/(n+ 1 − k).

When there are ties, the procedure is carried out in exactly the same way but
according to the distinct values: after moving through k observations without deletions,
delete one of the next group of m tied observations with probability m/(n+ 1− k); the
choice of which of the m to delete is done with equal probabilities.

Now we have set up a discrete time stochastic process description of how Nn and
Yn (and hence Λ̂n and F̂n) are generated from Nn+1 and Yn+1. It will turn out that for
this new set up, we have:

Mn(t) = Nn(t) −
∫ t

0

Yn(s)Λ̂n+1(ds)
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is a (discrete time, t) martingale. Now exactly the same arguments which related

E(
∫
φdF̂ ) to

∫
φdF via the martingale M , will relate E(

∫
φdF̂n) to

∫
φdF̂n+1 via the

martingale Mn, where the expectation is now taken with respect to our sequential ran-
dom deletion experiment for given Nn+1, Yn+1.

We prove the new martingale property as follows. Note the following, in which t is
one of the values of the T̃i:n+1:
— if the random deletion has already been made, then Yn(t) = Yn+1(t), ∆Nn(t) =

∆Nn+1(t), hence trivially ∆Nn(t) = Yn(t)∆Λ̂n+1(t).
— if the random deletion has not already been made, then Yn(t) = Yn+1(t) − 1 while

∆Nn(t) =

{
∆Nn+1(t) − 1 with probability ∆Nn+1(t)/Yn+1(t)

∆Nn+1(t) with probability 1 − ∆Nn+1(t)/Yn+1(t)

hence

E(∆Nn(t)|past) = ∆Nn+1(t) −
∆Nn+1(t)

Yn+1(t)

=
∆Nn+1(t)

Yn+1(t)
(Yn+1(t) − 1) = Yn(t)∆Λ̂n+1(t).

Combining both cases, E(∆Nn(t)|past) = Yn(t)∆Λ̂n+1(t).
Therefore Mn(t) is a discrete time martingale. Exactly as in ‘identifying the limit’

introduce F̃n defined to have hazard measure Λ̂n(dt) on {t : Yn(t) > 0}, Λ̂n+1(dt) on
{t : Yn(t) = 0}. We find (cf. (5))

(1 − F̃n(t)) − (1 − F̂n+1(t)) = −
∫ t

0

(
1 − F̂n(s−)

)Jn(s)

Yn(s)
Mn(ds)

t

s

(
1 − Λ̂n+1(du)

)

for all t, showing, since the integrand (in s) is a predictable process, that EF̃n(t) =

F̂n+1(t) for all t. Consequently E(
∫
φdF̃n) =

∫
φdF̂n+1. But for φ ≥ 0,

∫
φdF̂n ≤∫

φdF̃n, giving us the reverse supermartingale property: E(
∫
φdF̂n) ≤

∫
φdF̂n+1.

One can get further information about E(
∫
φdF̂n) by considering exactly when∫

φdF̂n and
∫
φdF̃n could differ. Since the discrete support of Λ̂n is contained in that

of Λ̂n+1, a little reflection shows that the only possibility for a difference is in the mass

F̃n and F̂n give to the largest observation t = T̃n+1:n+1, in the case when (for that value

of t) Yn(t) = 0 but Yn+1(t) = 1. If ∆Λ̂n+1(t) = 0 there is still no difference. So in order
for there possibly to be a difference we must have, at sample size n+1, a unique largest
observation which is furthermore uncensored; and the difference arises precisely when
this is the observation to be deleted when stepping down to sample size n. In this case
F̃n assigns mass 1 − F̂n(t−) to this observation while F̂n assigns zero mass. Therefore
we have:

E

(∫
φdF̂n

)
=

∫
φdF̂n+1

− 1{Yn+1(t) = 1,∆Nn+1(t) = 1} · φ(t) · E(1{Yn(t) = 0}(1 − F̂n(t−))
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with t = T̃n+1:n+1. From this equality an interesting representation for the unconditional

expectation of
∫
φdF̂n can be derived, see Stute and Wang (1993):

E

(∫
φdF̂k

)
=

∫

T

φdF

−
∞∑

n=k

E

(
φ(T̃n+1:n+1)(1 − F̂n(T̃n:n))1{T̃n:n < T̃n+1:n+1,∆n+1:n+1 = 1}

)
.

Putting k = 0 with the convention F̂0 = 1, T̃0:0 = 0,
∫
φdF̂0 = 0 also gives the curious

identity

∫

T

φdF =

∞∑

n=0

E

(
φ(T̃n+1:n+1)(1 − F̂n(T̃n:n))1{T̃n:n < T̃n+1:n+1,∆n+1:n+1 = 1}

)
.

Concluding remarks.

In retrospect the above proof can be made shorter by imitating the proof of weak
consistency at the beginning of this section: by the Volterra equation and by the dif-
ferentiability based proof of uniform consistency on [0, σ] for any σ ∈ T , it suffices to

show in the crucial case F (τ−) < 1, G(τ−) = 1 that Λ̂(τ−) → Λ(τ−) almost surely
as n → ∞. But we have exactly the same martingale properties in the random dele-
tion experiment relating Λ̂n to Λ̂n+1 as usually hold relating Λ̂ to Λ, in particular,

Λ̃n − Λ̂n+1 =
∫
(Jn/Yn)dMn with Mn = Nn −

∫
YndΛn+1. This makes Λ̂n(τ−) also a

reverse supermartingale and the same arguments as above can be used. There seems
to be a lot of scope for further results here; for instance, weak convergence as a process
jointly in n and t; study of sequential properties of other martingale connected esti-
mators and rank tests; study of ‘Kaplan-Meier U-statistics’; investigation of whether
similar structure exists with fixed censoring or in the random truncation model (see
section 10); and so on.

The discrete time martingale property we have found has parallels in many other
combinatorial settings. For instance, bootstrap theory can be done by using the fact
that the martingale property of N−

∫
Y dΛ in the real world carries over to a martingale

propery of N∗−
∫
Y ∗dΛ̂ in the bootstrap world (as usual the star denotes the bootstrap

version of any statistic). More comments will be made on this (in particular, why it is
true) in section 11. Permutation distributions of k-sample rank tests can be studied by

using the fact that the permutation distribution of Ni −
∫
YidΛ̂ is again a martingale,

where the index i refers to the ith sample of k and Λ̂ is based on combining all k
samples; see Andersen, Borgan, Gill and Keiding (1982) and Neuhaus (1992, 1993). In
particular the latter author shows the very surprising result that permutation tests can
be asymptotically validly made even with unequal censoring distributions, provided the
right normalisation is used.

To return to strong consistency, and to be honest, it seems to this author that for
statistical purposes, strong consistency is not worth much more than weak consistency.
(Despite this comment, section 11 will give yet another approach to Glivenko-Cantelli
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theorems). In real life n is fixed and both theorems say that for n large, F̂n is uniformly
close to F with high probability. Strong consistency just suggests a faster rate than weak
consistency. In statistics it is more important to get a distributional approximation to
F̂ −F so that we can say how close F̂ is likely to be to F . The next section will survey
such results showing again how martingale methods can be a swift route to getting
optimal results. Also we want to draw attention to some serious open problems which
seem probabilistically interesting as well as important for applications.

Before this, we should comment on the reverse supermartingale property we have
found. Is it just a (probabilistic) coincidence or does it have a deeper (statistical!)

significance? The answer is that it is strongly connected to the property of F̂ of being
a nonparametric maximum likelihood estimator. In classical statistics, the difference
between a maximum likelihood estimator and the true parameter can be approximated
as minus the score divided by the information. The score is a martingale in n with
variance equal to the information; this makes score divided by information a reverse
martingale (i.e., a sample mean is a reverse martingale). So certainly one should not be

surprised to find that F̂ is approximately a reverse martingale in n. We have shown that
it is almost exactly a reverse martingale; just the censoring of the largest observation
can spoil the martingale property.

Further comments on the link to the maximum likelihood property can be found
in ABGK (end of section X.2).

9. Confidence bands for Kaplan-Meier.

We saw in section 7 that

F̂ − F ∗

1 − F ∗
=

∫
1 − F̂−

1 − F

J

Y
dM. (1)

This makes (F̂ − F ∗)/(1− F ∗) a square integrable martingale on [0, σ] for each σ such
that F (σ) < 1. By the recipe 〈

∫
HdM〉 =

∫
H2d〈M〉 we find

〈n 1
2
F̂ − F ∗

1 − F ∗
〉 =

∫
(1 − F̂−)2

(1 − F )2
nJ

Y
(1 − ∆Λ)dΛ. (2)

Suppose σ also satisfies G(σ−) < 1, so in fact y(σ) > 0. For n → ∞ the right hand
side converges in probability (by the Glivenko-Cantelli theorem for Y/n and by uniform

weak consistency of F̂ ) to the deterministic, increasing function

C =

∫
(1 − F−)2

(1 − F )2
1

y
(1 − ∆Λ)dΛ

=

∫
dΛ

(1 − ∆Λ)y
.

(3)

If F is continuous we also have that the jumps of n1/2(F̂ −F ∗)/(1− F ∗) are uniformly
bounded by

n− 1
2

1

1 − F (σ)

n

Y (σ)

P→ 0 as n→ ∞.
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These two facts (when F is continuous) are all that is needed to conclude from Re-

bolledo’s martingale central limit theorem that n1/2(F̂ − F ∗)/(1 − F ∗) converges in
distribution, for n → ∞, to a continuous Gaussian martingale with predictable varia-
tion (or variance function) equal to the deterministic function C (see ABGK, section
II.5). Here weak convergence on D[0, σ] is in the classical sense of weak convergence
with the Skorohod metric on D[0, σ], but since the limit proces is continuous, this is
equivalent to weak convergence in the modern sense with respect to the supremum
norm.

When F can have jumps the martingale central limit theorem is not directly ap-
plicable. Gill (1980) shows how it can be applied after splitting up the jump of N
at time t, conditionally given the past bin(Y (t),∆Λ(t)) distributed, into Y (t) separate
Bernoulli(∆Λ(t)) distributed jumps at equidistant time points in a small time interval
inserted into the real line at time t. On an expanded time interval one gets weak con-
vergence to a continuous process with as variance function a version of the function
C, with its jumps linearly interpolated over inserted time intervals. The inserted time
intervals can then be deleted again giving a result for the original process.

In any case one has, on [0, σ], that with probability converging to 1 the functions
F ∗ and F coincide. Denoting by B the standard Brownian motion, this gives us the
final result

n
1
2
F̂ − F

1 − F
D→ B ◦ C (4)

on D[0, σ], supremum norm, assuming only F (σ) < 1 and G(σ−) < 1.
We showed in section 6 how this result followed from empirical process theory

and quite a lot of calculations (in fact calculation of the limiting variance was even
omitted there). A point we want to make is that once the martingale connections have
been made, the conclusion (4), including the formula (3) for the asymptotic variance
function, is a completely transparent consequence of the Duhamel equation (1) and the
easy computation (2).

In statistical applications this result can be used in many ways. Here we discuss
its use in confidence band constructions: with one aim being to draw attention to an
open problem posed in Gill (1983).

From now on we restrict attention to the case when F is continuous. Let σ, satis-
fying y(σ) > 0 be fixed. The function C is not known but it is natural to estimate it
by

Ĉ =

∫
ndΛ̂

(1 − ∆Λ̂)Y
.

This estimator is uniformly weakly consistent on [0, σ] (also for discontinuous F ). Let
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qα be the 1 − α-quantile of the distribution of sup0≤s≤1 |B(s)|. Then we have:

lim
n→∞

P

(
sup
[0,σ]

∣∣∣∣n
1
2
F̂ − F

1 − F̂

∣∣∣∣ >
√
Ĉ(σ)qα

)

= lim
n→∞

P

(
sup
[0,σ]

∣∣∣∣n
1
2
F̂ − F

1 − F

∣∣∣∣ >
√
C(σ)qα

)

= P

(
sup
[0,σ]

∣∣∣∣
B ◦ C√
C(σ)

∣∣∣∣ > qα

)

= P

(
sup
[0,1]

|B| > qα

)
= 1 − α

since
B ◦ C√
C(σ)

∼ B ◦
(

C

C(σ)

)
.

Thus:

P

(
F lies between F̂ ± n− 1

2

√
Ĉ(σ)(1 − F̂ ) on [0, σ]

)
→ 1 − α as n→ ∞;

or in other words F̂ ± n− 1
2

√
Ĉ(σ)(1− F̂ ) is an asymptotic 1−α confidence band for F

on [0, σ]. The band is called the Renyi band after its uncensored data analogue (Renyi,
1953) and was introduced independently by Gill (1980) and Nair (1981). It is actually
a special case (‘d = 0’) of a class of bands proposed by Gillespie and Fisher (1979). The
similar band for the hazard function was introduced by Aalen (1976).

This band is easy to derive and use in practice but it has two drawbacks. Firstly, in
order to use it we must specify σ in advance and the interpretation of the theory is that
Y (σ)/n must not be very close to zero if we want the true coverage probability of the
band to be close to the nominal 1 − α. Secondly, the width of the band is determined
strongly by C(σ) which suggests that the band ‘concentrates on times close to σ’—it

gives a tight interval round F̂ (t) at t = σ at the cost presumably of a rather wide
interval for small t.

But fortunately many other bands are possible. The Brownian motion is only
one of many well understood Gaussian processes, and there are simple transformations
changing it into others. Two natural choices are: transformation to a Brownian bridge;
and transformation to an Ornstein-Uhlenbeck process. Both transformations address
our second problem; the first perhaps is also a solution to the first problem.

For the first transformation we note that the process

B(t)

1 + t
has covariance structure

s ∧ t
(1 + s)(1 + t)

=
s

1 + s

(
1 − t

1 + t

)
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for s < t. This is a time transformation of the Brownian bridge; defining

K =
C

1 + C

and similarly K̂ = Ĉ/(1 + Ĉ) we can write, since 1/(1 + C) = 1 −K,

(1 −K)B ◦C ∼ B0 ◦K

where B0 denotes the Brownian bridge.
Fixing σ as before, we have immediately

n
1
2
1 −K

1 − F
(F̂ − F )

D→ B0 ◦K (6)

on [0, σ]. Letting qα,u denote the 1 − α quantile of the supremum of the absolute value
B0 on [0, u], u < 1, and making use of the uniformly consistent estimator of K on [0, σ],
we have:

P

(
F lies between F̂ ± n− 1

2
1 − F̂

1 − K̂
q
α,K̂(σ)

on [0, σ]

)
→ 1 − α as n→ ∞; (7)

another confidence band for F . This is called the Hall and Wellner band after its
inventors, Hall and Wellner (1980). It has the rather attractive property of reducing
to a Kolmogorov-Smirnov type band (fixed width) if there is no censoring. At the end
of this section we mention another band having this property. (The Hall-Wellner band
is actually also a member of the earlier mentioned Gillespie-Fisher class of bands; take
‘c = d’).

Now we can describe the open problem: can σ be replaced by the largest observation
T̃(n) in (7), eliminating the need to choose some σ and getting a confidence band on the
largest possible interval?

Certainly one can carry through part of the argument: it turns out that the weak
convergence in (6) is true on the maximal interval [0, τ ], without any further conditions
on F or G; see Gill (1983) and Ying (1989). If we could extend this to

n
1
2
1 − K̂

1 − F̂
(F̂ − F )

D→ B0 ◦K (8)

on [0, τ ], without conditions on F or G, then the confidence band construction ‘on the
maximal interval’ will be valid too.

The problem is completely open; perhaps the new techniques in the Stute-Wang
theorem (section 8) could help resolve this. Possibly (8) is only true subject to some

modification, e.g., of K̂, but still leading to something like (7) with σ = τ . We think
the problem is rather important since so far there is no theorem justifying ‘common
practice’, which is to compute a confidence band on a large interval whose endpoint σ
is such that Y (σ) is rather small.

The previous transformation seemed canonical in some way—it is the most direct
way to transform to a Brownian bridge. However one should note that the number n
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enters into the computation of the band in three places: not just in the leading n−1/2

but also in the weight function 1− K̂ and in the quantile q
α,K̂(σ)

since K̂ = Ĉ/(1 + Ĉ)

and Ĉ =
∫

(ndN)/((Y − ∆N)Y . It is easy to check (e.g., by scaling properties of
Brownian motion), that replacing n in all these locations by cn for any 0 < c < ∞
keeps (7) true. Alternatively imagine adding to the data many observations censored
at zero; n increases but N and Y do not change. So n is ‘an arbitrary constant’ in this
construction. This means that (7) is not quite as canonical as it first seems, and draws
some doubt as to whether (7) can be extended to the maximal interval. Still we may
pose as open problem: construct asymptotically valid confidence bands for F on the
maximal interval [0, T̃(n)].

The Brownian bridge process (like Brownian motion) has two nice properties: (i) it
is Markov, (ii) it is Gaussian. There is, up to rescaling, exactly one stationary Gaussian
Markov process and that is the Ornstein-Uhlenbeck process. Can we get from B or B0

to OU by time and space transformations? Start with B0. To achieve stationarity we
must obviously at least have constant variance. Now the process

B0(t)√
t(1 − t)

has covariance structure

√
s

1 − s

√
1 − t

t

= exp

(
−
(

log

√
t

1 − t
− log

√
s

1 − s

))
,

for s < t. Thus letting φ(t) = log
√

(t/(1 − t)) and ι(t) = t we see that

B0

√
ι(1 − ι)

◦ φ−1 has covariance structure exp(−|u− v|).

Thus

√
n

K(1 −K)

1 −K

1 − F
(F̂ − F ) = n

1
2

√
1 −K

K

1

1 − F
(F̂ − F )

= n
1
2

F̂ − F√
((1 − F )2C)

D→ OU ◦ log
√
C

and hence, using consistent estimators,

P

(
F lies between F̂ ± q

α,log
√

(Ĉ(σ2)/Ĉ(σ1))
n−1/2(1 − F̂ )

√
Ĉ on [σ1, σ2]

)
→ 1 − α

where qα,u is the 1−α quantile of the supremum of the absolute value of the Ornstein-
Uhlenbeck process over an interval of length u. This band is called the EP band (‘equal
precision’) since each interval forming the band has asymptotically equal probability
that F passes through it. It was proposed by Nair (1981), omitting unfortunately many
important details from an unpublished report of one year before. See also Nair (1984)
and Hjort (1985b).

Another possibility is not to transform to a known process but to use analytic
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methods, simulation, or bootstrapping to obtain or estimate the quantile of the limiting
law of an unfamilar process. Going back to Gill’s (1983) results, this paper actually
establishes, using martingale inequalities to control the right-endpoint problem, weak
convergence on the whole line of n

1
2h · (F̂ − F )/(1 − F ) for any nonincreasing weight

function h such that
∫∞

0
h2dC < ∞; the result for h = (1 − K) = 1/(1 + C) follows

since
∫
(1/(1 + C)2)dC = [1/(1 + C)] < ∞. (More nice tail results for Kaplan-Meier

using some product-integration and martingale methods are given by Yang, 1992, 1993).
Many choices of h can be taken; for instance h = (1 −K)α or h = yα for α > 1

2 , where
y = (1 − F )(1 −G). In particular the choice h = y leads to the result

n
1
2 (1 −G)(F̂ − F )

D→ y ·B ◦ C

on [0, σ], supremum norm. Moreover the techniques based on ‘in probability linear
bounds’ in Gill (1983) show that even

n
1
2 (1 − Ĝ)(F̂ − F )

D→ y ·B ◦ C

where 1 − Ĝ = y/(1 − F̂ ), the Kaplan-Meier estimator of the censoring distribution.
We will show in section 11 that the bootstrap works for this process: consequently,

with stars from now on indicating bootstrap versions, the 1−α quantile of the supremum
of the absolute value of y ·B◦C can be consistently estimated by that of n

1
2 (1−Ĝ∗)(F̂ ∗−

F̂ ) (or if you prefer, n
1
2 (1− Ĝ)(F̂ ∗ − F̂ )). Denoting this estimated quantile by q∗α gives

us the confidence band F̂ ± q∗αn
−1/2/(1 − Ĝ) on the whole line:

P

(
F lies between F̂ ± q∗αn

−1/2/(1 − Ĝ) on [0, τ ]

)
→ 1 − α

as n → ∞. These bounds reduce to Kolmogorov-Smirnov when there is no censoring,
are valid even if F is not continuous, but require a modest simulation experiment to
compute. They have a width which for t close to τ (the bigger n, the closer you must
get) becomes very large (include values outside [0, 1] to both sides) and are therefore
not quite what we are looking for. But maybe they are the best we can get.

More details and an alternative derivation of these bands are given in section 11.

10. Point processes, martingales and Markov processes.

The theory of counting processes was so far de-emphasized but it lies at the basis of
the martingale connection in our study of the Kaplan-Meier estimator in sections 7
and 9. Also our study of Markov processes in section 3 is incomplete without showing
how the matrix intensity measure is involved in a key martingale property of certain
counting processes associated with (and equivalent to) the Markov process. The aim
of this section is to put the main facts on record, emphasizing the connections with
product-integration. The interested reader can follow up the tremendously rich statis-
tical implications of this theory in ABGK.

To begin with we introduce some notation and terminology. Consider a sequence
(Tn, Jn), n = 1, 2, . . ., of random elements where the Tn take values in (0,∞] and the
Jn in some measurable space (E, E). Actually if Tn = ∞ then Jn is undefined, or
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more accurately, takes the value ø for some distinct point ø /∈ E. We consider the Tn

as a sequence of ordered random times of certain events and the Jn as labels or marks
describing the nature of the event at each time. We suppose that different events cannot
occur simultaneously and that there are no accumulation points or explosions of events:
thus, T1 > 0, Tn+1 > Tn if Tn is finite, otherwise Tn+1 = ∞ too; for all finite τ there
exists an n with Tn > τ . We call the process (Tn, Jn) a marked point process with
marks in E.

Many stochastic processes can be described in terms of an underlying marked point
process. For instance, the paths of a Markov process of the type studied in section 3
can be described, together with the state at time 0, by the times of jumps from one
state to another, marked for instance by the label of the new state, or, by the pair of
labels (origin state, destination state). This description preserves the time stucture of
the process in the strict sense that the description of the Markov process up to time t
is equivalent to the description of the marked point process up to time t (together with
the intitial state), for every t.

The process (Tn, Jn) can be represented in several other ways: in terms of random
measures, and in terms of counting processes. As a random measure, we consider the
points (Tn, Jn) as the locations of the atoms of a counting measure µ on the product
space [0,∞)× E. Thus for measurable sets B ⊆ [0,∞)×E we define

µ(B) = #{n : (Tn, Jn) ∈ B}.

Another useful representation is in terms of counting processes: for measurable A ⊆ E
we define the process NA by

NA(t) = µ([0, t]× A) = #{n : Tn ≤ t, Jn ∈ A}.

The counting processes NA are càdlàg, finite, integer valued step functions with jumps
of size +1 only, zero at time zero, and for disjoint A and A′, the processes NA and NA′

do not jump simultaneously. If E is finite then the collection (N{i} : i ∈ E) is called a
multivariate counting process.

Our aim is to describe the distribution of the point process through a notion of
conditional intensity or random intensity measure. This requires us to fix a filtration
(Ft) specifying for each t, what is considered ‘to have occurred at or before time t’.
We certainly want the point process to be adapted in a proper sense to this filtration:
different ways to say the same thing are to assume that all the counting processes NA

are adapted to (Ft) in the usual sense, or that all the Tn are (Ft)-stopping times with
Jn being FTn

measurable. The point process is called self-exciting when the filtration is
the minimal filtration to which the process is adapted, commonly denoted (Nt). Thus
Nt is generated by all NA(s), s ≤ t, A ∈ E , or equivalently by all 1{Tn ≤ t}, Tn1{Tn ≤
t}, Jn1{Tn ≤ t}.

Slightly more general is the case of a filtration ‘self-exciting from time 0’ by which
I mean Ft = F0 ∨ Nt for an arbitrary time-zero sigma algebra F0. In fact this is not
really more general, since, at the cost of allowing the point process to have an event
at time zero, one can take the larger mark space E ∪ Ω, E ⊕ F0 (supposing E and Ω
disjoint), and let there be an event at time zero with mark identically equal to ω. The
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special structure Ft = F0 ∨ Nt allows rather nice results, as we shall soon see, as well
as very nice explicit characterisations of stopping times T and such sigma algebras as
FT , FT− in terms of the paths of the point process; for this we refer to Courrège and
Priouret (1966) and Jacobsen (1982). Also conditional expectations can be computed
in the intuitively natural way.

To begin with we just suppose the point process is adapted to the filtration. By
general process theory (the Doob-Meyer decomposition) the NA have compensators ÑA:
these are nondecreasing, predictable, càdlàg processes such that for each A

MA = NA − ÑA

is a local square integrable martingale, zero at time zero. The MA are in fact localized
by the (Tn) themselves, i.e., for each n, MTn

A is a square integrable martingale. By
more general process theory (stochastic integration) it turns out that the predictable
variation and covaration processes of the MA can be easily described in terms of the
ÑA themselves:

〈MA,MA′〉 = ÑA∩A′ −
∫

∆ÑAdÑA′ .

In particular, 〈MA〉 = 〈MA,MA〉 =
∫
(1 − ∆ÑA)dNA and for disjoint A and A′,

〈MA,MA′〉 = −
∫

∆ÑAdÑA′ . If the compensators ÑA are continuous, even more sim-

plication occurs: 〈MA〉 = ÑA, 〈MA,MA′〉 = 0 for disjoint A,A′.

In the random measure approach, one combines all the ÑA into one compensating
random measure µ̃ defined through the obvious extension procedure by

µ̃([0, t]× A) = ÑA(t).

Now we suppose the filtration (or the process) is self-exciting from time 0. In
this case it can be shown that, on the event Tn−1 ≤ t < Tn, conditional expectations
given Ft can be computed as conditional expectations given F0, given (Tk, Jk), k =
1, . . . , n − 1, and given Tn > t. Furthermore, the conditional distribution of Tn can
be described as the distribution with hazard measure, restricted to (t,∞), equal to
that of Tn conditional only on F0 and (Tk, Jk), k = 1, . . . , n − 1. This is the same as
conditioning on FTn−1

. Write ΛTn|FTn−1
for the hazard measure of Tn conditional on F0

and (Tk, Jk), k = 1, . . . , n−1. It turns out that the compensator of the counting process
NA can be described in terms just of these conditional hazard measures together with
the conditional distributions of each Jn given F0, (Tk, Jk), k = 1, . . . , n− 1 and given
Tn = t: on (Tn−1, Tn]

ÑA(dt) = ΛTn|FTn−1
(dt)P(Jn ∈ A|FTn−1

, Tn = t).

Equivalently,

µ̃(dt, dx) =

∞∑

n=1

1(Tn−1,Tn](t)ΛTn|FTn−1
(dt)PJn|FTn−1

,Tn=t(dx).

This result is due to Jacod (1975). There, the measurability problems associated
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with choosing proper versions of all these conditional distributions are properly treated.
We do not prove the result here but just note that because of the decomposition we
have just made into intervals between the jump times, the result needs to be proved for
the case of a point process making just one jump. The calculation we made in section 7
proves the result in that case when, moreover, E consists of just one point. The reader
might like as an exercise to extend that simple calculation to the case of a finite E.

The result has a simple intuitive content: µ̃(dt, dx) is the probability, given the
past up to just before time t, to have an event in the small time interval dt times the
conditional probability, given there is an event, that its mark is in dx. The result also
shows how one can in principle extract the distribution (given F0) of the whole point

process µ from a description of its compensator µ̃: from the trajectories of the ÑA one
can extract the conditional hazard measures of the ‘next jump times’ and given them,
the distribution of ‘the next jump mark’. In particular, Radon-Nikodym derivatives
between two probability distributions can be found by simple algebraic manipulation of
formal ratios of the expression

dP|F0
·

t

(
(1 − µ̃(dt, E))1−µ(dt,E)

∏

x

µ̃(dt, dx)µ(dt,dx)

)
.

Note the interpretation of this expression as a product of conditional distributions given
the past for observing the point process in the infinitesimal time intervals dt. More
details are given in ABGK, section II.7.

Markov processes

Now we specialize the above results to Markov processes. For the Markov process of
section 3, introduce the space E of pairs of distinct states (i, j). Let F0 be the sigma-
algebra generated by X(0), the state of the process at time 0. Let

Nij(t) = #direct transitions from i to j in (0, t],

Yi(t) = 1{process is in state i at time t−}.

Let Ft be the sigma-algebra generated by X(0) and all Nij(s), (i, j) ∈ E, s ≤ t. Observe
that (Ft) is exactly the same as the filtration generated by the process X itself.

Comparison of our description of µ̃ above and the probabilistic construction of the
process X from its intensity measure Q in section 3 then shows the following key result:

Ñij(dt) = Yi(t)Qij(dt);

or the processes Mij defined by

Mij(t) = Nij(t) −
∫ t

0

Yi(s)Qij(ds)

are local square integrable martingales. From the general theory of compensators of
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counting processes mentioned above we then furthermore have

〈Mij ,Mi′j′〉(t) = δi,i′

∫ t

0

Yi(s)(δj,j′ − ∆Qij(s))Qij′(ds).

This is the starting point for a martingale based analysis of Aalen-Johansen es-
timators of P (the probability transition matrix of the process) based on censored
observations of the process, exactly parallel to our study of the Kaplan-Meier estimator
sketched in section 9. For further details see Aalen and Johansen (1978), ABGK Section
IV.1.3.

We conclude with some remarks concerning related problems. The random trun-
cation problem concerns estimation of the distribution F of a positive random variable
T , given i.i.d. observations of pairs (C, T ) drawn from the conditional distribution of
C, T given T > C, where C > 0 is (unconditionally) independent of T and also has a
completely unknown distribution. Keiding and Gill (1990) show that the joint (condi-
tional) distribution of C, T can be represented as a Markov process which starts at time
0 in a state ‘waiting’, at time C moves to a state ‘at risk’, and at time T to a state ‘fail-
ure’. The transitions are called ‘entry’ and ‘death’ respectively. The (non-trivial) point
here is that having completely unknown distributions for C and T corresponds to hav-
ing completely unknown transition intensity measures Qwaiting, at risk and Qat risk, failure.
The latter is moreover identical to the hazard measure corresponding to F . So results
on nonparametric estimation of F can be extracted from results on Nelson-Aalen and
Aalen-Johansen estimators without further work needed, once the identification between
the random truncation model and the Markov model has been made.

Often of interest in practice are so-called semi-Markov or Markov renewal processes.
These can be described here as a point process with state space the set of all pairs (i, j)
(not just different pairs). Let, for each i, Qij denote a set of (defective) hazard measures
such that

∑
j Qij is also a hazard measure. We interpret an event with mark (i, j) as

a jump from state i to state j and introduce Nij and Yi as before, and an initial state
X(0). Let L(t) be the elapsed time since the last jump of the process strictly before time
t. So L has left continuous paths, zero just after each jump time and then increasing
linearly with slope +1 up to and including the next jump time. Then, the process is
semi-Markov with intensity measures Qij means that Nij has compensator Ñij given
by

Ñij(dt) = Yi(t)Qij(dL(t)).

An ordinary renewal process has just one state.
In Gill (1981) it is shown how counting process methods can be used to study

Nelson-Aalen and Kaplan-Meier type estimators for censored observations from a Mar-
kov renewal process, despite the occurrence of the random and non-monotone time
transformation L in the compensator just given.

While writing on Markov processes we cannot resist drawing attention to an open
problem concerning grouped observations of a homogenous Markov process, studied in
Gill (1985). Consider a finite state space, homogenous, Markov process, on the time
interval [0, 1]. Let the column vector J contain the indicators for the state of the
process at time 1 and let L denote the column vector containing the total lengths of
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time spent in each state during [0, 1]. Is E(LJ⊤) positive semidefinite, whatever the
initial distribution over the states and the intensities of transitions between the states?

11. Empirical processes revisited.

Here we look again at empirical process methods for analysing the Kaplan-Meier esti-
mator, with particular reference to bootstrapping. There is some connection between
the new approach given here and methods used by Pollard (1990) to study the Nelson-
Aalen estimator. First we recall some of the modern terminology of empirical process
theory; see van der Vaart and Wellner (1993) for the complete story.

Let X1, . . . , Xn denote i.i.d. observations from a probability measure IP on a space
X , and let IPn denote the empirical probability measure based on the Xi’s. Let F
denote a class of measurable functions from X to IR. Write IPf and IPnf for true mean
and empirical mean respectively of a function f ∈ F , both supposed finite and even
bounded. Define the empirical process

Zn = (n
1
2 (IPn − IP)f : f ∈ F),

this is to be considered as a (possibly nonmeasurable) random element of the space
ℓ∞(F), the class of bounded functions on F endowed with the supremum norm. An
envelope for F is a function F such that |f | ≤ F for all f ∈ F .

The class F is called a Glivenko-Cantelli class if (IPnf : f ∈ F) converges in
supremum norm, almost uniformly, to (IPf : f ∈ F). It is called a Donsker class if
Zn converges weakly to a tight Gaussian limit in ℓ∞(F). Many theorems giving useful
conditions for a class to be Donsker or Glivenko-Cantelli are known. In particular
we mention that if X is the real line, then the class of uniformly bounded monotone
functions is both Glivenko-Cantelli and Donsker. This extends obviously to functions
of uniformly bounded variation by writing them as differences of monotone functions.

One can show quite easily that a class of monotone functions, not necessarily uni-
formly bounded but having an integrable envelope, is also Glivenko-Cantelli. It is not
clear whether monotone functions with square integrable envelope are Donsker (one ap-
proach might be to apply van der Vaart and Wellner, 1993, Lemma 2.42, to monotone
functions bounded by M and then let M → ∞). However van der Vaart (1993) at least
shows that a 2 + ε finite moment of the envelope is sufficient.

Bootstrapping means estimating the distribution of Zn by the conditional distri-
bution given IPn of the bootstrap process

Z∗
n = (n

1
2 (IP∗

n − IPn)f : f ∈ F),

where IP∗
n is the empirical distribution based on a random sample of size n from IPn.

In principle this is a known or computable distribution: there are nn possible samples
of equal probabilily n−n which just have to be enumerated. In practice one uses the
Monte-Carlo method: actually takeN samples of size n from IPn, and use their empirical
distribution.

A celebrated theorem of Giné and Zinn says that the bootstrap works (the con-
ditional distribution of Z∗

n approaches that of Zn) if and only if the Donsker theorem
holds: in fact, if F has a square integrable envelope then almost surely, Z∗

n converges
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in distribution to the same limit as Zn; without the integrability condition, the result
holds in (outer) probability. This latter result is formulated properly in terms of a suit-
able metric metrizing convergence in distribution. It has all the desired (and expected)
consequences, e.g., convergence in probability of quantiles of the distribution of real
functionals of Z∗

n, in particular its own supremum norm.
These results mesh nicely with the notion of compact differentiability, since ℓ∞(F)

is a normed vector space. Write for brevity IPn(F) for (IPn(f) : f ∈ F). If φ is a
compactly differentiable functional mapping ℓ∞(F) to another normed vector space,
then the delta method holds:

n
1
2 (φ(IPn(F)) − φ(IP(F)))

D→ dφ(IP(F)) · Z.

Also bootstrap results carry over to differentiable functionals: if F is Donsker and φ is
compactly differentiable at IP(F) then the bootstrap works in probability for

n
1
2 (φ(IP∗

n(F))− φ(IPn(F)));

if moreover F has a square integrable envelope and φ is continuously compactly dif-
ferentiable at IP(F) then the bootstrap works almost surely. For the very short and
elegant proofs of these statements see van der Vaart and Wellner (1993, Theorems 3.24
and 3.25).

As second preparatory excursion we should mention some special aspects of boot-
strapping the Kaplan-Meier estimator. In fact there is another sensible way to bootstrap
censored survival data: rather than resampling from the observations Xi = (T̃i,∆i) it
would seem more reasonable to resample from an estimate of the model supposed to
generate them: thus, estimate F and G by Kaplan-Meier estimators F̂ and Ĝ, sam-
ple survival times T ∗

i and censoring times C∗
i independently from F̂ and Ĝ, then form

pairwise minima and indicators, and finally calculate a bootstrapped Kaplan-Meier esti-
mator F̂ ∗ from them. It turns out (Efron, 1981) that this procedure is (probabilistically
at least) identical to straight resampling from the Xi. The reason for this is the fact
that the random censorship model in a strong sense is not a model at all: to every
distribution of X = (T̃ ,∆) one can associate essentially one random censorship model
which generates it, namely that with survival and censoring hazard measures given
respectively by

ΛF (dt) =
P(T̃ ∈ dt,∆ = 1)

P(T̃ ≥ t)
,

ΛG(dt) =
P(T̃ ∈ dt,∆ = 0)

P(T̃ > t or T̃ = t,∆ = 0)
.

(1)

Note the asymmetry here, corresponding to the asymmetry in the definition of ∆.
The point is that if T̃ ∈ dt and ∆ = 1, we cannot know whether or not C ∈ dt. The
asymmetry means that Ĝ, the Kaplan-Meier estimator of G, is not defined simply by
replacing ∆ by 1−∆ in the definition. The correct definition can be inferred from (1).

A useful consequence of the identity is the fact (1− F̂ )(1− Ĝ) = 1− F̃n, corresponding

to (1 − F )(1 −G) = (1 − F̃ ).
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These facts mean that any method used to study the Kaplan-Meier estimator under
regular sampling can be used to study it under bootstrapping. For instance, the fact
that N −

∫
Y dΛ is a martingale implies that N∗ −

∫
Y ∗dΛ̂ is a IPn-martingale (a direct

proof is also easy), and all martingale proofs of weak convergence of n
1
2 (F̂ − F ) can

be copied to find a proof of (conditional) weak convergence of n
1
2 (F̂ ∗ − F̂ ); the only

complication is that F and G are no longer fixed but vary with n (as F̂ and Ĝ). See
Akritas (1986) for the first proof that the bootstrap works for Kaplan-Meier along these
lines.

As a final remark we point out that it is often wise to bootstrap studentized

statistics; e.g., estimate the distribution of n
1
2 (F̂ − F )/((1 − F̂ )

√
Ĉ) with that of

n
1
2 (F̂ ∗ − F̂ )/((1− F̂ ∗)

√
Ĉ∗). It is not yet known if this does for Kaplan-Meier what it

usually does, i.e., give second order rather than just first order correctness, especially if
we are interested in distributions of nonlinear functionals of this such as a supremum
norm. One should also realise (van Zwet, 1993) that to enjoy the extra accuracy one
will have to take a number of bootstrap samples N which is a good deal larger than is
customary.

After all these preparations some first results can at least be got very fast. The
continuous differentiability of product-integration and the other maps involved, together
with the classical Donsker theorem for F 1

n , F̃n, shows that the bootstrap works almost
surely for the Kaplan-Meier estimator on any interval [0, σ] such that y(σ) > 0.

We now show the great power of modern empirical process methods by looking
at van der Laan’s identity , a general identity for certain semiparametric estimation
problems which we will study from that point of view in section 13.

The results of sections 4 and 6 show that F̂ − F can be approximated by

n−1(1 − F )

∫
dN − Y dΛ

(1 − F )(1 −G−)
; (2)

in fact the difference is uniformly oP(n− 1
2 ) on intervals [0, σ] where y(σ) > 0. In fact

there is a related identity which is so powerful that consistency, asymptotic normality,
asymptotic efficiency, and correctness of the bootstrap, all follow from it in a few lines
by appeal to the general theory sketched above. The identity is surprising and new; it is
easy to obtain, and like all good things connected to Kaplan-Meier is really just another
version of the Duhamel equation. In section 13 we show how the identity follows from
the fact that (2) is the so-called efficient influence curve for estimating F , and F̂ is the
nonparametric maximum likelihood estimator of F (keeping G fixed). From this point
of view it is a special case of van der Laan’s (1993a) identity for linear-convex models:

F̂ (t) − F (t) = (IPn − IP)ICeff(·, F̂ , t). (3)
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Here at last is the new identity:

F̂ (t) − F (t) = n−1(1 − F̂ (t))

∫ t

0

dN − Y dΛ̂

(1 − F̂ )(1 −G−)

− n−1(1 − F̂ (t))

∫ t

0

d(EN) − (EY )dΛ̂

(1 − F̂ )(1 −G−)
.

(4)

Note how it is obtained from (2) by replacing F and Λ throughout by F̂ and Λ̂, then
subtracting from the result the same functional of the expectation of N and Y . The
distribution G remains everywhere fixed.

To prove the identity directly note first some major cancellations. Since dΛ̂ =
dN/Y the first term disappears entirely; since d(EN) = (EY )dΛ we can simplify the
second term, showing that (4) is equivalent to

F̂ (t) − F (t) = n−1(1 − F̂ (t))

∫ t

0

(EY )(dΛ̂ − dΛ)

(1 − F̂ )(1 −G−)

= n−1(1 − F̂ (t))

∫ t

0

(1 − F−)(dΛ̂ − dΛ)

1 − F̂

=

∫ t

0

(1 − F−)(dΛ̂ − dΛ)
t

(·)

(1 − dΛ̂)

which is simply a version of the Duhamel equation (2.12). The only condition needed
here is that G(t−) < 1.

So far it seems as if we have only complicated something rather more transparent.
However, introduce the following two classes of functions of (T̃ ,∆), both indexed by the
pair (F, t):

f1,(F,t)(T̃ ,∆) =
(1 − F (t))1{T̃ ≤ t,∆ = 1}
(1 − F (T̃ ))(1 −G(T̃−))

,

f2,(F,t)(T̃ ,∆) = (1 − F (t))

∫ t∧T̃

0

dF

(1 − F )(1 − F−)(1 −G−)
.

For the time being G is kept fixed. Now fix σ such that y(σ) > 0 and let F be the class
of all f1,(F,t) together with all f2,(F,t) such that t ∈ [0, σ] while F can be any distribution
function on [0,∞) whatsoever.

Because
∫

dF/((1−F )(1−F−)) = F/(1−F ) and thanks to the indicator of T̃ ≤ t
in f1, all f ∈ F are bounded by 1/(1−G(σ−)) <∞. The functions f2 are monotone as

functions of T̃ ; the functions f1 are unimodal (increasing then decreasing). This means
that F is an easy example of a Glivenko-Cantelli and a Donsker class. The reason this
is useful is because we can rewrite our identity (4) as

F̂ (t) − F (t) = (IPn − IP)(f
1,(F̂ ,t)

− f
2,(F̂ ,t)

).
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Since the Glivenko-Cantelli theorem tells us (IPn−IP)(F) goes, almost surely, uniformly

to zero, we extract from the identity uniform consistency of F̂ on [0, σ]. Next, the

Donsker theorem for n
1
2 (IPn − IP)(F) together with continuity of the limiting process

in F allows us to conclude weak convergence of (n
1
2 (F̂ (t) − F (t)) : t ∈ [0, σ]) without

further work.
A bootstrap conclusion is a little more tricky since in the identity G was fixed but

in bootstrapping it must also be allowed to vary. To take care of this and also to further
extend the results, multiply each of the functions in F by (1−G(t)), and let not only t
and F but also G now vary completely freely. In fact t is not restricted to any special
interval [0, σ] any more either. We now have that the functions in F are uniformly
bounded by 1, and of course they retain their monotonicity properties. So the new,
larger, F is still Glivenko-Cantelli and Donsker. But since in an obvious notation

(1 −G(t))(F̂ (t) − F (t)) = (IPn − IP)(f
1,(F̂ ,G,t)

− f
2,(F̂ ,G,t)

)

we can extract directly:

‖(1 −G)(F̂ − F )‖∞ → 0 almost surely,
√
n(1 −G)(F̂ − F )

D→ (1 −G)Z on T , ‖ · ‖∞
where T = {t : G(t−) < 1}.

Finally for a bootstrap result, we appeal to the Giné-Zinn theorem, noting that

(1 − Ĝ(t))(F̂ ∗(t) − F̂ (t)) = (IP∗
n − IPn)(f

1,(F̂ ∗,Ĝ,t)
− f

2,(F̂ ∗,Ĝ,t)
).

Consequently

√
n(1 − Ĝ)(F̂ ∗ − F̂ )

D→ (1 −G)Z on T , ‖ · ‖∞, almost surely.

This is still not quite the required result (which should concern
√
n(1−Ĝ∗)(F̂ ∗−F̂ )) but

good enough for practical application, and very directly obtained. To replace (1 − Ĝ)

by (1 − Ĝ∗) it is necessary to do a little more work: it is known that (1 − Ĝ)/(1 −G)
is uniformly bounded in probability (Gill, 1983, by use of Doob’s inequality) and the
process (1 −G)Z is tied down at its upper endpoint so there is not too much difficulty
in making the required replacement.

These results, breathtakingly fast to obtain, allow many improvements and modi-
fications. For instance instead of multiplying by (1 − G) one could try (1 − G)/y

1
2−ε,

for ε > 0; this leads to a class F whose envelope is unbounded but does have a finite
2 + ε/4 moment. It seems unlikely however one can do quite as well as the optimal
results in the martingale approach, since there a special relation between f1 and f2 was
used which here, since F varies freely, is not available.

As we will see in section 13 it would have been in principle possible to derive these
results about Kaplan-Meier without having an explicit representation of the estimator
and without an explicit form of the identity. All that counts is the fact that it is a non-
parametric maximum likelihood estimator in a model having certain general structural
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properties.
For further bootstrapping ideas see Doss and Gill (1992) and ABGK section IV.1.5.
Before leaving Kaplan-Meier, at least in a traditional context, we would like to make

some conjectures concerning estimation of F (τ−) in the case G(τ−) = 1, F (τ−) < 1.
Suppose both F and G have strictly positive densities ‘just before τ ’, think for example
of the typical case F = exponential(λ), G = uniform(0, τ). We saw that in this case

that F̂ (τ) is consistent; however, from the result on weak convergence we see that the

asymptotic variance of n
1
2 (F̂ (τ)−F (τ)) would be infinite if the usual formula (1−F )2 ·C

would be applicable. In fact the very easy calculation of formula (3.6) of Theorem 3.1
of van der Vaart (1991b) shows that root n, regular estimation of F (τ) is impossible.
The question then arises: what rate is achievable? Does Kaplan-Meier achieve the best
rate?

If G had been known one could have estimated F (τ) by
∫ τ

0
dF 1

n/(1−G). In seems
unlikely that using the censored observations too would tremendously improve the rate
of convergence of this estimator, and also unlikely that knowing G is very crucial.
So there is some similarity with the problem of estimation of E(X−1) based on i.i.d.
observations of a positive X , and a little calculation shows that our case corresponds to
that in which E(X−2+ε) <∞ for each ε > 0, but E(X−2) = ∞.

This problem has been studied (among many others) by Levit (1990). He shows
that the truncated estimator n−1

∑
X−1

i 1{Xi > 1/
√
n} achieves the rate

√
(n/ logn)

and that this rate is optimal in a minimax sense. One can also obtain this result by using
the van Trees inequality (Gill and Levit, 1992) and introducing the ‘hardest parametric
submodel’ which is the exponential family with sufficient statistic X1{X > 1/

√
n}.

This leads to the following conjecture:

Conjecture. F (τ−) can be estimated at rate
√

(n/ logn), the Kaplan-Meier estimator

F̂ (τ−) does not achieve this rate but the modification F̂ (τ − 1/
√
n) does. Instead of the

the non-random time τ − 1/
√
n one can also use the random time Tn = sup{t : Y (t) ≥√

n} here.

12. Dabrowska’s multivariate product-limit estimator.

One can very naturally generalise the random censorship model of the previous sections
to higher dimensional time. Let T = (T1, . . . , Tk) be a vector of positive random vari-

ables; let C = (C1, . . . , Ck) be a vector of censoring times; and define T̃i = Ti ∧ Ci,

∆i = 1{Ti ≤ Ci}. Question: given n i.i.d. replicates of the vectors (T̃ ,∆), how should
one estimate the distribution of T?

This simple question has turned out surprisingly hard to answer satisfactorily. One
might have expected that some obvious generalization of the Kaplan-Meier estimator
would do the trick. However it seems that each defining property of that estimator,
when used to suggest a multivariate generalization, leads to a different proposal; some
of which are very hard to study and some of which turn out not to be such very good
ideas after all.

From a statistical point of view the property of nonparametric maximum likelihood
estimator would seem the most essential. However in the multivariate case the NPMLE
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is only implicitly defined; in fact, it is severely non-unique and many choices are not
even consistent. Sophisticated modification of the NPMLE idea is needed to make it
work, and the analysis of the resulting (efficient) estimator is highly nontrivial; see van
der Laan (1993c).

Another way to think of the Kaplan-Meier estimator is via the Nelson-Aalen es-
timator of the hazard measure. There is a natural multivariate generalization of the
latter, so if one fixes the relation between hazard and survival, a plug-in estimator is
possible. For instance in the one-dimensional case one can consider the survival function
S as the solution, for given hazard function Λ, of the Volterra equation S = 1−

∫
S−dΛ.

This has a multivariate generalization leading to an estimator called the Volterra es-
timator; it turns out to have rather poor practical performance. Very much better is
a more subtle proposal of Prentice and Cai (1992a,b) who point out that there is also
a Volterra type equation, in higher dimensions, for the multivariate survival function
divided by the product of its one dimensional margins. The integrating measure is no
longer the multivariate hazard but a slightly more complicated, though still related,
measure.

Finally one might expect: isn’t there simply a relation, involving some kind of
product-integration, between multivariate hazard and multivariate survival? The an-
swer is that there is such a relation, but it does not involve multivariate generalisations
of hazard measures but rather something new called iterated odds ratio measures. This
relation lies at the basis of Dabrowska’s (1988) generalised product-limit estimator and
will be the subject of this section.

In this section we will concentrate on two issues concerning the Dabrowska estima-
tor: firstly, the required extension of product-integration theory to higher dimensional
time; and secondly, the derivation of the product-integral representation of a multivari-
ate survival function in terms of iterated odds ratio measures (or interaction measures;
Dabrowska, 1993). We will not discuss the estimation of these measures by their natural
empirical counterparts, nor the statistical properties of the Dabrowska estimator which
is obtained by plugging the empirical measures into the representation. The differen-
tiability approach we took in section 6 works here very well and gives all the expected
results: consistency, asymptotic normality, correctness of the bootstrap. Gill, van der
Laan and Wellner (1993) give full details in the two dimensional case, together with a
study of the Prentice-Cai estimator. Gill (1992) shows that the basic tools developed
there suffice also for studying the general case.

Many further results and connections can be found in Dabrowska (1993).
Here is the general idea. Let T denote a k-dimensional survival time as above,

and define its survival function S by S(t) = P(T ≫ t) where the symbol ≫ denotes
coordinatewise strict inequality >. In the one-dimensional case we formed an interval
function from S by taking ratios. In higher dimensions we form a ‘hyperrectangle
function’ by taking generalised or iterated ratios, just as an ordinary measure is formed
by taking generalised differences. Let s, t be k-vectors; let E = {1, . . . , k} and for
A ⊆ E let tA denote the lower-dimensional vector (ti : i ∈ A). Now we define, for s ≤ t
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(coordinatewise ≤), the rectangle-function

S(s, t) =
∏

A⊆E

S((sA, tE\A))(−1)|A|

.

This is obtained by taking S at the top corner of the rectangle (s, t] = {u : s ≪ u ≤
t}, then dividing by the values of S at all corners one step down from the top, then
multiplying by the values one further step down, and so on.

It is easy to check that S is multiplicative over partitions of a rectangle by sub-
rectangles. Defining informally L(dt) = S(dt) − 1 then we should have

S(0, t) =

(0,t]

(1 + L(dt)),

L(0, t) =

∫
(S(dt) − 1).

Now S(0, t) =
∏

A⊆E SE\A(tE\A)−1|A|

, where SA denotes the survival function of TA.
So a further step is required to recover the original survival function; in fact we have
S(t) =

∏
A⊆E SA(tA). The final result is therefore

S(t) =
∏

A⊆E
(0A,tA]

(1 + LA(dsA)).

We need estimators for LA and theory for the analytical properties of the functionals
which are now involved. The idea is to estimate L(dt) (and similarly LA(dtA)) using
the same idea which lies at the base of the Nelson-Aalen estimator: look just at those
observations for which T̃ ≥ t. For each coordinate i ∈ E we can decide whether or not
the underlying Ti lies in (ti,∞i). Write

1 + L(dt) = S(dt) =
∏

A⊆E

P(TA ≥ tA, TE\A ≫ tE\A)(−1)|A|

=
∏

A⊆E

P(TE\A ≫ tE\A |T ≥ t)(−1)|A|

.

Restricting attention to the observations with T̃ ≥ t we can simply replace the condi-
tional probabilities with numbers of observations known to satisfy TE\A ≫ tE\A.

Multivariate product-integration.

The general theory of product-integration in section 2 goes through, completely un-
changed , when we study ‘rectangle functions’ in [0,∞)k, provided these functions take
scalar values so that the order of multiplication is not relevant. We consider only rect-
angular partitions (i.e., the Cartesian product of ordinary partitions of each coordinate
axis). Whenever an order does have to be fixed—the key identities (2.1)–(2.5) need an
order to be specified—we take the video-scanning or lexicographic ordering.
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Proposition 1 and Theorem 1 give no problems. Theorem 2 is the first place where
care is needed: there we used the fact that

|T | → 0 ⇒ max
T

α−
0 → 0

where α−
0 is the measure α0 less its largest atom, T denotes a partition of a fixed

rectangle (0, τ ], and |T | denotes its mesh: the largest length of an edge of a subrectangle
in the partition. This is true in k dimensions too, as the following argument shows.

Suppose it were not true. Then one could find rectangles An = (sn, tn] with
diameter (maximum edge-length) converging to zero, with lim supα−

0 (An) > 0. Along
a subsequence we can, by compactness, assume sn → t, tn → t. Now if A ⊆ B,
α−

0 (A) ≤ α−
0 (B). So with B(t, δ) standing for the sphere, centre t, radius δ, we have

α−
0 (B(t, δ)) > c > 0 for every δ > 0. If t itself is an atom then for small enough δ it

is the largest one in B(t, δ). If not we can remove the point t anyway and conclude
α0(B(t, δ) \ {t}) > c > 0 for all δ > 0, which is impossible.

Finally, and essential for the later continuity and differentiability results, we need
to establish versions of the equations (9) to (13) of section 2, including the Duhamel
equation and the Peano series.

These equations were proved by passing to the limit in the discrete equations (1) to
(5); and in those equations the order in which terms are taken does make a difference.
However the discrete products which are involved can all be interpreted as approxima-
tions to product-integrals over various subregions of the rectangle (s, t], and therefore
the proof sketched in section 2 goes through, with the proper modifications of the limit-
ing equations. To do this let ≺ denote lexicographic ordering in [0,∞)k. The Duhamel
equation for instance becomes:

(s,t]

(1 + dα) −
(s,t]

(1 + dβ)

=

∫

u∈(s,t] {v∈(s,t]:v≺u}

(1 + dα) (α(du) − β(du))

{v∈(s,t]:v≻u}

(1 + dβ).

The regions {v ∈ (s, t] : v ≺ u} and {v ∈ (s, t] : v ≻ u} are not rectangles, but are
easily seen to be disjoint unions of at most k rectangles, so the product-integral can be
defined for them by taking finite products over rectangles.

Further details are given in Gill, van der Laan and Wellner (1993).

Dabrowska’s representation.

This material is taken from ABGK section X.3.1.
It is easy to check that the iterated odds ratios S(s, t) defined at the beginning of

the section are ‘equal to one on the diagonal’ and are ‘right continuous’. In order to
apply Theorem 1 of section 2 in order to conclude the existence of an additive measure
L such that S = (1 + dL), L =

∫
(dS − 1) we must check the domination property

for S. Before that however, we give some further discussion of the interpretation of the
L-measures.
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In fact S(s, t) has an interpretation in terms of the 2×2×· · ·×2 contingency table
for the events si < Ti ≤ ti versus Ti > ti, with respect to the conditional distribution
of T given T ≫ s. Consider first the two-dimensional case: we have by definition

S
(
(s1, s2), (t1, t2)

)
=
S(t1, t2)S(s1, s2)

S(s1, t2)S(t1, s2)

since there are four subsets A to consider, two of them (∅ and E) having an even number
of elements, and two ({1} and {2}) having an odd number. We can now rewrite S(s, t)
as

S
(
(s1, s2), (t1, t2)

)
=
S(t1, t2)/S(s1, t2)

S(t1, s2)/S(s1, s2)

=
P(T1 > t1|T2 > t2)/P(T1 > s1|T2 > t2)

P(T1 > t1|T2 > s2)/P(T1 > s1|T2 > s2)
.

So S(s, t) is the ratio of the conditional odds for T1 > t1 against T1 > s1, under the
conditions T2 > t2 and T2 > s2 respectively. If T1 and T2 are independent, this odds
ratio will equal 1. ‘Positive dependence’ between T1 and T2 will express itself in an
odds ratio larger than one, since ‘increasing T2 leads to a higher odds on T1 being
large’. Negative dependence corresponds to an odds ratio smaller than 1. In fact we
will see in a moment that if the odds ratio equals 1 for all s ≤ t, then T1 and T2 are
independent. So in two dimensions S − 1 is a measure of dependence indexed by all
rectangles (s, t].

In one dimension the odds ‘ratio’ is just the odds itself P(T1 > t1|T1 > s1). In higher
dimensions, the k-dimensional iterated odds ratio is the ratio of two k − 1 dimensional
iterated odds ratios: i.e., the ratio of the iterated odds ratios for (T1, . . . , Tk−1) and the
rectangle ((s1, . . . , sk−1), (t1, . . . , tk−1)], conditional on Tk > tk and conditional on Tk >
sk. Now it measures multidimensional dependence or interaction: if the dependence
between T1, . . . , Tk−1 increases as Tk increases one has a positive interaction (increasing
interdependence) between T1, . . . , Tk and the iterated odds ratio is larger than one.

The result of Theorem 1 (when we have verified the domination property) is that
a dominated additive interval function (therefore, an ordinary signed measure) exists,
let us call it L, such that

S(s, t) =

(s,t]

(1 + dL)

where the product-integral is understood as the limit of approximating finite products
over rectangular partitions of the hyper-rectangle (s, t] into small sub-hyper-rectangles.
We call L the iterated odds ratio measure or cumulant measure and consider it as a
measure of k-dimensional interaction (a measure of dependence when k = 2 and just a
description of the marginal distribution when k = 1). Note that there is an L-measure,
denoted LC , for each subset of components TC of T . Since the odds ratio for a small
rectangle (t, t+dt] is S(t, t+dt) = 1+L(dt) and a ratio of 1 corresponds to independence,
we may interpret an L of zero as corresponding to zero-interaction or independence; a
positive L corresponds to positive interaction or dependence, and similarly for a negative
L. Of course things may be more complicated: L may take different signs in different
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regions of space.
By Theorem 1 of section 2 we may calculate L as L(s, t) =

∫
(s,t]

L(du) =
∫
(s,t]

d(S−
1); in other words, the L-measure of a rectangle (s, t] is approximated by just adding
together the deviations from independence (or interactions) S(u, u + du) − 1 of small
rectangles (u, u+ du] forming a partition of (s, t].

It remains to verify the domination property of the iterated odds ratios S(s, t).
Let us first look at the two-dimensional case which will give the required insight

for the general case. For s ≤ t ≤ τ , s 6= t, we have

∣∣S(s, t)− 1
∣∣ =

∣∣∣∣
S(t1, t2)S(s1, s2)

S(s1, t2)S(t1, s2)
− 1

∣∣∣∣

≤ S∗(τ)−2
∣∣S(t1, t2)S(s1, s2) − S(s1, t2)S(t1, s2)

∣∣

where we write S∗(τ) as shorthand for P(T ≫ τ or T = τ); this may be different from
P(T ≥ τ); taking account of the difference allows us to get a slightly stronger result.
Now let a, b, c, d be the probabilities in the 2 × 2 table:

T1 ∈ (s1, t1] T1 > t1
T2 ∈ (s2, t2] a b
T2 > t2 c d

Then the last inequality can be rewritten as
∣∣S(s, t) − 1

∣∣ ≤ S∗(τ)−2
∣∣d(a+ b+ c+ d) − (c+ d)(b+ d)

∣∣

= S∗(τ)−2|ad− bc|
≤ S∗(τ)−2(a+ bc)

= S∗(τ)−2

(
P
(
T ∈ (s, t]

)
+ P

(
T1 ∈ (s1, t1]

)
P
(
T2 ∈ (s2, t2]

))
.

The right hand side, a constant times the joint probability measure of T1 and T2 plus the
product of their marginals, is a finite measure on (0, τ ], hence the domination property
holds.

Exactly the same kind of bound holds in general by taking account of the same
magic cancellation of unwanted terms. Let τ be fixed and satisfy S∗(τ) = P(T ≫
τ or T = τ) > 0. We can write for s ≤ t ≤ τ , s 6= t,

S(s, t)− 1 =

∏
even C

S(sC , tE\C) − ∏
odd C

S(sC , tE\C)

∏
odd C

S(sC , tE\C)

where ∅ ⊆ C ⊆ E. Now by the inclusion-exclusion principle

P(T ≫ s, Ti > ti for all i ∈ E \ C)

= P(T ≫ s) − P(T ≫ s, Ti ≤ ti for some i ∈ E \ C)

= P(T ≫ s) −
∑

i∈E\C

P(T ≫ s, Ti ≤ ti) +
∑

i6=j∈E\C

P(T ≫ s, Ti ≤ ti, Tj ≤ tj) − · · ·



66

or in other words

S(sC , tE\C) = S(s) +
∑

∅⊂B⊆E\C

(−1)|B|P
(
T ∈ (sB, tB] × (sE\B ,∞E\B)

)

=
∑

∅⊆B⊆E\C

(−1)|B|P
(
T ∈ (sB, tB] × (sE\B,∞E\B)

)

Interchanging the roles of C and E \C in the numerator, and neglecting a possible sign
change (if |E| is odd) we get

S(s, t) − 1 = ±

∏
even C

∑
∅⊆B⊆C

φB − ∏
odd C

∑
∅⊆B⊆C

φB

∏
odd C

S(sC , tE\C)
(1)

where
φB = (−1)|B|P

(
T ∈ (sB, tB] × (sE\B,∞E\B)

)
.

Now when we expand the numerator of (1) an amazing cancellation occurs: products
of φB where the sets B do not cover E cancel out, leaving just products of sets which
do cover E. Before proving this, we illustrate it when E = {1, 2}:

∏

even C

∑

B⊆C

φB −
∏

odd C

∑

B⊆C

φB (2)

= (φ12 + φ1 + φ2 + φ∅)φ∅ − (φ1 + φ∅)(φ2 + φ∅) = (φ12φ∅ − φ1φ2)

where {1, 2} ∪ ∅ = E, {1} ∪ {2} = E.
In general, consider one element i ∈ E and split the sums and products in (2)

according to whether or not i is included in B,C: we get

∏

even C,i/∈C

∑

B⊆C

φB .
∏

odd C,i/∈C

(∑

B⊆C

φB +
∑

B⊆C

φB∪{i}

)

−
∏

odd C,i/∈C

∑

B⊆C

φB .
∏

even C,i/∈C

(∑

B⊆C

φB +
∑

B⊆C

φB∪{i}

)
.

The terms which nowhere include i are then
∏

even C,i/∈C

∑

B⊆C

φB .
∏

odd C,i/∈C

∑

B⊆C

φB −
∏

odd C,i/∈C

∑

B⊆C

φB .
∏

even C,i/∈C

∑

B⊆C

φB = 0;

thus each term in the expansion of (2)—a sum of products of φB—includes a B con-
taining i.

The result is that (1) can be bounded in absolute value by S∗(τ)−2|E|−1

times a
sum of products of φB , where each term has ∪B = E. Consider such a term

∏
φBi

. For
each Bi choose Ci ⊆ Bi such that ∪Ci = E and the Ci are disjoint. Now bound

∏
φBi

by
∏

P
(
TCi

∈ (sCi
, tCi

]
)
. These are finite measures so we have obtained the required

result.
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Showing that the multiplicative interval function S is of bounded variation also
constitutes a proof of the fact that the additive interval function logS is of bounded
variation and hence generates a bounded, signed measure. In fact Dabrowska (1988)
originally introduced her representation via additive decompositions of this measure;
see also Dabrowska (1993) for further exploration on these lines. Elsewhere in studying
the Dabrowska estimator one needs the fact that if a function Y is of bounded variation
then so also is 1/Y ; Gill (1992) and Gill, van der Laan and Wellner (1993) just take
this fact for granted. However it is not trivially true and in fact needs a supplementary
condition on the lower-dimensional sections of F ; a proof can be given exactly on the
lines above. We summarize these facts as a couple of exercises for the reader, together
with a small research project:

Let E be a finite set; let E be the set of all subsets of E, including E itself and the
empty set ∅, and A,B,C ∈ E , A ⊆ E . The number of elements in C is denoted |C|.
Consider the following two statements:

(i) If one expands
∑

C

(−1)|C|
∏

B 6=C

∑

A⊆B

φA as
∑

A

cA
∏

A∈A

φA then cA = 0 for every

A with E \⋃A∈AA 6= ∅.
(ii) If one expands

∏

A:|A| is even

φA −
∏

A:|A| is odd

φA as
∑

A

c′A
∏

A∈A

φA then c′A = 0 for

every A with E \⋃A∈AA 6= ∅.

Problems:
a) Prove (i) and (ii).
b) Suppose F : IRk → IR+ and all its lower dimensional sections (fix some of the k

arguments and let the others vary) are of bounded variation, and F is bounded
away from zero. Use (i) to show that 1/F is of bounded variation and (ii) to show
logF is of bounded variation.

c***) What about other functions of F (and G . . . )? Is there a combinatorial background
to these problems? Is there a non-combinatorial way to prove b)?

13. Laslett’s line-segment problem.

This section and the next consider genuinely spatial problems. The problem of the
next section doesn’t look like a censored data problem at all but we will find that
the Kaplan-Meier estimator is the answer all the same. The problem treated here, on
the other hand, looks superficially like a case for Kaplan-Meier: however, that is very
inappropiate, and we need to develop some new theory for nonparametric maximum
likelihood estimators (NPMLEs) in missing data problems. The results are from Wijers
(1991), van der Laan (1993a,b).

The following problem was introduced by Laslett (1982a,b). Consider a spatial line-
segment process observed through a finite observation window W . Suppose the aim is
to estimate the distribution of the lengths of the line-segments. Some line-segments
are only partly observed: one or both endpoints are outside the window and the true
length is unknown. As an example, Figure 1 shows a map of cracks in granitic rock on



68

the surface in a region of Canada, only partially observable because of vegetation, soil,
water, and so on.

Figure 1. Fracture patterns in a part of the Stone, Kamineni and Brown (1984) map
of a granitic pluton near Lac du Bonnet, Manitoba, Canada. There are 1567 fractures.
Of these, both ends are shown for only 256 fractures in the exposed areas whose lengths
can be completely measured. The rest, namely 1311 fractures, are censored.

The data from this example was used to illustrate some methodological aspects
of the Kaplan-Meier estimator (Chung, 1989a,b) but that does not seem correct. (In
fact, the data was also used to decide on locations for storing nuclear waste). Formally
we have censored observations, but is the ‘random censorship’ model applicable? And
anyway, there is surely a length bias problem: longer line sements have a bigger chance
of getting (partly) into the window and being observed, so the line segments observed
are not a random sample from the distribution of interest.

The example of Figure 1 is very complex, in particular because of the shape of
the window (another aspect is that the cracks in the rock are really surfaces of which
only a section is observed, and so a stereological analysis is really needed). We will
concentrate on the case of a convex (e.g., rectangular) window, see Figure 2. Also we
will assume that the line-segment process is a homogenous Poisson line-segment process
with segment lengths and orientations independent of one another, since this makes the
problem concrete and analysable; and the results we obtain will be useful also when
these assumptions are not true.
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Figure 2.

To be specific, let W be a fixed compact, convex region of IR2 with nonempty inte-
rior. Let F be a distribution, on (0,∞) of line-segment lengths; let K be a distribution
on (−π/2, π/2] of line-segment orientations. Let locations of ‘left-hand endpoints’ be
generated according to a Poisson point process with constant intensity λ on IR2. To
each location of a left-hand endpoint attach a line-segment with length drawn from
F and an independent orientation drawn from K, independently over locations. The
line-segment process is now completely defined. (The choice of left-hand endpoints as
preferred point on each line-segment is of course arbitrary; any other convention leads
to the same process). The data, on the basis of which F , K and λ are to be estimated,
consists of all non-empty intersections of line-segments with W . Each (at least par-
tially) observed line-segment is either completely observed (lies inside the window), or
is cut off at one or both ends by the boundary of the window. We call these possi-
bilities: uncensored, singly censored, or doubly censored. In the singly censored case,
given a preferred direction, we can further distinguish between singly-left-censored and
singly-right-censored. The orientation of observed line-segments is always completely
observed. How far a censored line-segment continues outside W is not known.

This problem has two non-trivial aspects. Firstly and more obviously: censoring,
not all line segments are completely observed. Secondly and less obvious: length bias,
the line segments hitting the window and at least partially observed have (complete)
lengths which are not a random sample from F . Longer line-segments have a bigger
chance to hit the window. So even if we knew the true lengths of all line-segments
hitting the window, we could not estimate F by their empirical distribution.

On the other hand, the problem is not completely intractable; on the contrary, in
a certain sense it is quite easy since ad hoc estimators of F are easy to construct which
(conditioning on the number n of line-segments observed) are even root n consistent.
For instance, consider all line-segments with left-hand endpoint in W . For such a
line-segment, its length X is independent of its orientation Θ and (left-hand endpoint)
location. Hence the length X is independent of the distance from the left-hand endpoint
to the boundary of the window in the direction Θ. What is observed is the minimum of
the two and the type (censored or uncensored), and we could use the ordinary Kaplan-
Meier estimator based on just these line-segments, discarding all those whose left-hand
endpoint is not observed.
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Of course we could just as well take right-hand endpoints (or top, or bottom) and
better still make some kind of average over these possibilities since it is not pleasant if
the estimator depends strongly on an arbitrary choice of direction. Averaging uniformly
over all directions avoids this arbitrariness but is rather complicated. However one could
also take the average, uniformly over directions, of the N and Y processes before going
through the steps of inverting Y , integrating with respect to N , and product-integrating
the resulting Λ̂. This turns out to be the same as computing the ordinary Kaplan-Meier
estimator with each line-segment included in the data set as many times as its endpoints
are observed: each uncensored line-segment twice, each singly censored one once, and
the doubly censored ones not at all.

The estimator just described is easy to calculate but obviously inefficent since it
does not make use of the doubly censored line-segments. Its (approximate) variance
cannot be calculated by the usual formula for Kaplan-Meier but one could use the
bootstrap, resampling the line-segments while treating each duplicated observation as
a single observation (as it really is). (Exercise: what is the asymptotic variance?)

We will treat the two problems (censoring, length bias) below in two different ways.
(To be honest, we will in fact in these notes only solve the one-dimensional problem
when the window W is an interval [0, τ ] on the line IR1). We will simply define away
the length-bias problem by agreeing to estimate the length distribution of the observed
line-segments. Since we will be able to establish a simple 1–1 relationship between F
and its length-biased version, we can concentrate on estimating the latter and transform
back later. Secondly, we will turn the censoring problem to our advantage by noting
that, after reparametrization, we have a special case of a nonparametric missing data
problem. In such models, the parameter space is convex and the distribution of one
observation is linear in the unknown parameter. Now we are in a position to apply
general techniques for convex-linear models developed by Wijers (1991), van der Laan
(1993a).

First we prove consistency according to an elegant technique developed by Wijers
(1991). Then we make use of more deep results from the theory of semiparametric
models and empirical processes, and in particular van der Laan’s (1993a) remarkable
identity for nonparametric maximum likelihood estimators in convex-linear models, to
give an alternative consistency proof for the NPMLE as well as asymptotic normality,
efficiency, and a bootstrap result; this can be done even though the NPMLE is only
implicitly defined and the equations which define it (the so-called self-consistency equa-
tions) are too complex to serve as the basis of a direct proof of these facts. In order
to explain this approach a brief summary of the theory of asymptotically efficient es-
timation in semiparametric models will be given. Throughout we will only sketch the
main lines of the argument, referring for the necessary computations to Wijers (1991)
and van der Laan (1993b).

As we mentioned above all this will only be done in the one-dimensional case. In
two dimensions there is an extra complication and the general analysis of this problem
is still open, though we believe the theory for the one-dimensional case will be very
useful indeed. Further remarks on this will be made later.

Here is the plan of the rest of this section. First we follow Laslett (1982a) in
deriving the likelihood for F , K and λ in the general case. We make some remarks
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on the definition (following Kiefer and Wolfowitz, 1956) and calculation of the NPMLE
and point out where the main difficulty (in going from one to two dimensions) lies. The
derivation we give is heuristic but effective and serves also to introduce some useful
ideas for the one-dimensional case to be studied next.

Specializing to one dimension, we follow Wijers (1991) in showing how a simple
reparametrization turns the problem into a nonparametric missing data problem. The
description of the problem in these terms allows one to directly write down various
useful ‘model identities’ and to characterise the NPMLE (just of F now, or rather, a
new parameter called V ) through the self-consistency equation (Efron, 1967; Turnbull,
1976). The same equation used iteratively is an instance of the so-called EM algo-
rithm (Expectation-Maximization: Dempster, Laird and Rubin, 1977) for calculating
the NPMLE. We outline Wijer’s consistency proof, based on simple convexity based in-
equalities. The inevitable hard work in actually carrying out the programme is omitted.

Then we discuss the so-called sieved NPMLE, which has the advantage that it can
be computed much more quickly, while the consistency proof just given applies just as
well to it as to the real NPMLE.

Next we sketch some general theory of semiparametric models and (heuristically at
least) derive van der Laan’s identity. We show how it can be used as an alternative route
to consistency as well as many other ‘higher order’ properties of the sieved NPMLE. We
also connect to the use of the identity in section 11 on the Kaplan-Meier estimator, this
being another instance of an NPMLE in a convex-linear model. We also show how van
der Vaart’s (1991b) theorem tells us that certain functionals of F cannot be estimated
(regularly) at square root of n rate.

Finally we discuss extension of the results to the general (two-dimensional) case
and also what will happen on relaxation of various of our model assumptions.

Laslett’s results.

For the time being then, consider the two-dimensional problem as described above,
parametrized by λ (Poisson intensity), F (length distribution) and K (orientation dis-
tribution). We want to write down ‘the probability density of the observed data’ as
a function of λ, K, and F ; the joint NPMLE of these three parameters is obtained
by maximizing this likelihood function over the parameter in some sense, to be made
explicit later. Fix an origin O, well outside the window. We consider infinite straight
lines which cross the window W , parametrized by the distance of the line to the origin
r together with the orientation of the line θ. Discretize, considering small intervals
[r, r+ dr) and [θ, θ+ dθ) partitioning the ranges of r and θ. We consider now all those
line-segments of the process, with left-hand endpoint lying in the strip of width dr
between the (r, θ) and (r + dr, θ) lines, and whose own orientation lies in the interval
[θ, θ + dθ), so more or less parallel to the strip. We restrict attention to strips which
cross the window. As we run through the small r and θ intervals we pick up in this way,
just once, every line-segment hitting the window. Moreover, what happens in different
strips is independent, by familar properties of the Poisson process.
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Figure 3.

Fix now one of these strips. Parametrise by the position of the left-hand endpoints
of the line-segments, relative to the position where the strip enters the window. Let the
length of the intersection of the window and the strip be τ , which depends of course on r
and θ. Now we have a one-dimensional process of line-segments, with length distribution
F and intensity λ̃ = λdr K(dθ), observed through the interval [0, τ ], since there are λdr
line-segments with left-hand endpoint in the strip per unit length, and a fraction K(dθ)
of them have the required orientation.

A homogenous Poisson line-segment process on the line can be considered as an
inhomogenous Poisson point process in the upper half-plane, as follows: to each line-
segment [T, T+X ] associate a point (T,X). The new point process has intensity measure

λ̃dtF (dx); −∞ < t < ∞, 0 < x < ∞. We can now calculate further using the facts
that disjoint regions contain independent, Poisson distributed numbers of points with
means equal to the total intensity of each region; and given the number of points n in
a certain region, their locations are distributed like the set of values in an i.i.d. sample
of size n from the normalized intensity (restricted to the region and normalized to have
total mass one).

In the (t, x) upper half-plane draw the diagonal line with slope −1 through the
origin, and draw the vertical lines t = 0 and t = τ . The two regions formed between
these three lines contain all line-segments (points) which hit the window. Those in the
left-hand region are ‘left-censored’ since they have T < 0 but T + X ≥ 0; they may
or may not be right-censored (T + X > τ). Those in the right-hand region are left-
uncensord (0 ≤ T ≤ τ) and may or may not be right-censored. Line-segments (points)
outside these two regions are not observed at all since either T +X < 0 or T > τ .
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Figure 4.

Since the integrals of λ̃dtF (dx) over the two regions equal λ̃µF and λ̃τ respectively
(µF = µ being the mean of the length distribution F ), the total numbers of observed

line-segments is Poisson(λ̃(µ+ τ)) distributed; the probabilities that an observed line-
segment is left-censored or left-uncensored are µ/(µ + τ) and τ/(µ + τ) respectively.
The residual length Y = T +X of a left-censored line-segment (T < 0) is, by a simple
calculation, continuously distributed with density (1−F (y))/µ, y > 0 (the same formula
as for the forward recurrence time in a stationary renewal process). The total length X
of a left-uncensored line-segment has the original distribution F . The residual lengths
of left-censored line-segments are censored (in the classical sense) at the fixed value τ .
The length of left-uncensored observations are randomly censored (again in the classical
sense) by τ − T , independent of X and uniform(0, τ) distributed.

So the probability (density) of each of the four kinds of observations X̃ , up to
factors not depending on F , is:

r.u.c. r.c.

l.u.c. dF (X̃) 1 − F (X̃)

l.c. (1 − F (X̃))/µ
∫∞

X̃
(1 − F (y))dy/µ

In the lower right entry (double-censored) the observed length X̃ = τ identically.

Now we recall that λ̃ is infinitesimal so that with large probability e−λ̃(τ+µ) there is

no observation in the strip’s transect of the window, with probability λ̃(τ + µ)e−λ̃(τ+µ)

just one observation, and the probability of more than one observation may be neglected.
So the probability of the observed data from one strip is proportional to a product of
terms selected as follows:

always if obsvn. if obsvn. if r.u.c. if r.c.

e−λ̃(τ+µ) λ̃(τ + µ)

if l.u.c. τ
τ+µ dF (X̃) 1 − F (X̃)

if l.c. µ
τ+µ

1−F (X̃)
µ

∫∞

X̃
1−F

µ

On cancellation and substitution for λ̃ we obtain the product of

always if obsvn. if u.c. if s.c. if d.c.

e−λdrK(dθ)(τ+µ) λdK(Θ) dF (X̃) 1 − F (X̃)
∫∞

X̃
(1 − F (y))dy
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where u.c., s.c. and d.c. stand for uncensored, single-censored and double-censored re-
spectively.

Now we multiply over all strips. The terms which only appear when a line-segment
is actually observed get multiplied over the observations. The exponential term, always
present, becomes an exponential of a sum over all strips crossing the window, therefore
of an integral. Note that τ = τ(r, θ) while µ = µF is constant. Splitting the integral
of (τ + µ)drK(dθ) into the sum of two integrals and integrating over r before θ, we
note that in the first term, τdr is the area of the intersection of strip and window.
Integrating over r gives the area of the window, denoted |W |. The integral of K(dθ) is
then equal to 1. For the second term, integrating dr over r gives the diameter of the
window as seen in the θ direction, which we denote diam(W, θ). Multiplied by K(dθ)
and integrating over θ gives the average (with respect to the distribution K) diameter,
which we denote EKdiam(W ).

Let N denote the total number of observed line-segments. The result of all these
computations, when we have inserted factors λ(|W | + µF EKdiam(W )) to the powers
plus and minus N , is:

e−λ(|W |+µF EKdiam(W ))(λ(|W | + µF EKdiam(W )))N

· (|W | + µF EKdiam(W ))−N ·
N∏

1

dK(Θi)

·
∏

u.c.

dF (X̃i)
∏

s.c.

(1 − F (X̃i))
∏

d.c.

∫ ∞

X̃i

(1 − F (y))dy

(1)

The first line represents the Poisson distribution, with mean

λ(|W | + µF EKdiam(W )),

of N ; the next two lines give the joint conditional distribution, given N , of observed
orientations Θi, censored lengths X̃i and types u.c., s.c., and d.c. Since the range of X̃i

usually depends on Θi, orientations and lengths are not generally independent despite
the product form. The factor (|W | + µF EKdiam(W ))−N depends on both K and F ,
and belongs just as well to the third as to the second line of (1). Together, these two
lines give the conditional joint distibution of the observations given N ; it is a product
over i = 1, . . . , N of i.i.d. observations, with a distribution depending on F and K but
not λ.

Now if λ is unknown the Poisson mean of N is also completely unknown. This
means that the NPMLE (λ̂, F̂ , K̂) of the three parameters based on the joint likelihood
(1) can be calculated by computing the NPMLEs of F and K from the conditional
likelihood of the data given N , i.e., the second and third lines of (1), and then setting
the observed value of N equal to its mean λ(|W |+µF EKdiam(W )) after substitution of

F̂ and K̂ for F and K respectively. In fact we will ignore λ from now on and consider
only the conditional distribution of the data given N = n, which depends only on F
and K. Asymptotics will be done ‘as n → ∞’ which corresponds to ‘as λ → ∞’.
Conventionally, asymptotics have been done for this kind of problem ‘as the window W
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becomes larger’. However in that case the edge effects which interest us become less
and less important and in the limit maybe only turn up in some kind of second-order
terms; whereas with our asymptotics, they remain equally important all the time.

So we would like to compute F̂ and K̂ by jointly maximizing the last two lines of
(1). Unfortunately this does not decompose into separate maximization problems for
F and K, though one can think of a natural iterative scheme: alternately determine F
given K by maximizing

(|W | + µF EKdiam(W ))−n
∏

u.c.

dF (X̃i)
∏

s.c.

(1 − F (X̃i))
∏

d.c.

∫ ∞

X̃i

(1 − F (y))dy, (2)

and K for given F by maximizing

(|W | + µF EKdiam(W ))−n
n∏

1

dK(Θi). (3)

It will be very important to have fast algorithms for the two separate maximizations
then! Alternatively one could do both maximizations for a range of fixed values, e.g.,
of EKdiam(W ), use numerical interpolation to maximize, and then recompute at this
value.

Laslett’s (1982a) main contribution is to show how a version of the EM algorithm
can be used to maximize (2) for given EKdiam(W ). Maximization of (3) for given µF is a
much easier problem, left to the reader to analyse (Exercise!). Below we will show how
(2) can be maximized in the one-dimensional case, which as far as these computations
are concerned is actually not essentially easier (the likelihood looks exactly the same,
only all double censored observations happen to be equal to one another).

We should explain exactly what we mean by ‘maximization over F ’ of a expression
like (2). Usually, a maximum likelihood estimator (MLE) is understood to be that
value of an unknown parameter which maximizes, over possible parameter values, the
density of the observations with respect to a suitable dominating measure, where the
density is evaluated at the actually observed data. This function is called the likelihood
function. In nonparametric problems like the present there is no dominating measure:
both discrete and continuous F and K are a priori possible; if discrete, we do not
know the support of the distribution; even if continuous, the distributions need not be
absolutely continuous with respect to Lebesgue measure; and so on. There is therefore
no likelihood to be maximized! However each pair of parameter values does permit
calculation of a two-point likelihood function, since any two probability distributions
are dominated by another measure (e.g., their sum). Thus any two parameter values
can be compared to one another. The NPMLE, if it exists, is by definition (Kiefer
and Wolfowitz, 1956) that value of the parameter which beats any other in all possible
pairwise comparisons.

It is often easy to see that any distribution with some mass not at the observations
is ‘beaten’ by some distribution with mass only at the observations. Computation of
the NPMLE then reduces to ordinary computation of the MLE assuming a discrete
distribution with known support. That happens in this problem. The NPMLE of
K for given F is an implicitly weighted empirical distribution; the NPMLE of F for
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given K puts mass on the observed uncensored observations and also, perhaps counter-
intuitively, on the observed censored observations (as well as some mass to the right of
the largest observation, location undetermined). We denote by the sieved NPMLE the
result of maximizing only over distributions with mass on the uncensored observations
(and to the right of all observations).

Consistency in the one-dimensional problem.

Now we reduce to one-dimension; the window W is the interval [0, τ ] on the real line.
The parameterK disappears; the (fixed) diameter of the window is just its length τ . The
NPMLE of F is computed by maximizing (2), in which all doubly censored observations
are identically equal to τ , which is also the value of EKdiam(W ). We have conditioned
on N = n.

Our approach is simply by a reparametrization to absorb the difficult factor (µ +
τ)−n into each of the n terms in the rest of the product, making the distribution (of

one observation, n = 1) linear in the parameter. With now λ̃ = λ let us reconsider
the Poisson point process introduced above. The introduction of a second and parallel
diagonal line (slope −1), intersecting the t-axis at t = τ , splits the two regions of
observable line segments into a total of four regions, corresponding to uncensored, singly-
left-censored, singly-right-censored and doubly-censored observations. The n observed
line-segments correspond to (T,X) which are distributed over the union of these four
regions with distribution

dtF (dx)

τ + µ
= V (dx)

dt

τ + x
(4)

where we define V , the marginal distribution of X , by

V (dx) =
τ + x

τ + µ
F (dx). (5)

This follows since, by inspection, the second factor of the right-hand side of (4) is the
conditional distribution of T given X = x (uniform on [−x, τ ]); what is left must be the
marginal distribution of X .

t
O τ

(T,X)

T T+X

x

Figure 5.

One can show that as F varies over all possible distributions (with finite mean µF ),
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V too varies over all possible distributions. One can recover µF from EV (1/(τ +X)) =
1/(τ + µ), and hence recover F from (5).

The i.i.d. pairs (Ti, Xi), withXi distributed as V and the Ti conditionally uniformly
distributed as above, are however not completely observed. Instead they are grouped
according to a certain rule: in the region ‘s.l.c.’ onto diagonal lines (parallel with the
two others), i.e., we observe the value of T +X ; in the region ‘s.r.c.’ they are grouped
onto vertical lines (giving the value of T ); in the region ‘d.c.’ they are grouped together
completely to a single value; and in the region ‘u.c.’ they are not grouped at all but
remain completely observed as points.

x

tO τ

u.c.

d.c.

s.l.c.
s.r.c.

Figure 6.

This is now a more or less classical situation for computing the NPMLE of arbi-
trarily grouped or censored data. First we write down, by our description of the model
and the grouping scheme, the self-consistency equation (Efron, 1966, Turnbull, 1976):

V̂ (dx) =
1

n

n∑

i=1

P
V̂

(Xi ∈ dx|X̃i,∆i). (6)

In words, the NPMLE of V is such that, for any regionA, the estimate V̂ (A) should equal

the average of the conditional probabilities, computed under V̂ , that each underlying
observation Xi lies in the region A given what is known about it. The right-hand side
of (6) is easy to write out explicitly, thanks to our simple grouping model; we do that
in a moment.

Next, one can calculate V̂ by the natural iteration scheme based on (6), an instance
of the EM algorithm (Dempster, Laird and Rubin, 1977). To be more precise, one

must first agree on the support of V̂ and start the iterations with a distribution which
does not have a smaller support. In our case we distinguish between the NPMLE
with support on all observations, and the sieved NPMLE with support only on the
uncensored observations. Both satisfy (6) and both can be iteratively calculated by the
EM algorithm; only the starting point must reflect our choice. (The proper NPMLE
may have zero mass on some of the singly censored values, but this is hard to determine
in advance and not important for the algorithm). We show later an alternative, faster
way to calculate the sieved NPMLE.
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Before proceeding we should be more specific about a difficulty which arises here:
the distribution of one observation (X̃,∆) does not determine V completely, but only
depends on V through its restriction (in the sense of a defective distribution) to [0, τ)
together with two ‘tail integrals’:

∫∞

τ− dV = 1 − V (τ−) and less trivially

h = hV =

∫ ∞

τ−

x− τ

τ + x
V (dx) = P(d.c.). (7)

This is because everything above τ− is grouped together either as a singly or as a doubly
censored observation. Wijers (1991) shows that there is a 1–1 correspondence between
(F |[0,τ), µF ) and (V |[0,τ), hV ). To be specific (these relations are easy to derive) use:

2τ

τ + µ
= 1 +

∫ τ

0

τ − x

τ + x
V (dx) − h; F (dx) =

τ + µ

τ + x
V (dx). (8)

The first part of (8) says that the probabilities of left-uncensored plus right-uncensored
equal one plus completely uncensored minus double censored. It will turn out that
V (τ−) is not actually root n rate estimable, but

∫ τ

0
((τ − x)/(τ + x))V (dx) fortunately

is (or obviously, depending on how you look at it: τ/(µ + τ) is the probability of a
left-uncensored observation so it and h and µ are trivially root n rate estimable).

From our picture of the joint distribution of (T,X) and the grouping scheme, it is

easy to verify that the X̃ with ∆ = l.c. and those with ∆ = r.c. are both continuously
distributed with density g(x) on [0, τ ] given by

g(x) =

∫ ∞

x

V (dy)

τ + y
=

∫ τ−

x

V (dy)

τ + y
+ g(τ−). (9)

One can also verify (by inspection of the picture) that

V (τ−) + 2τg(τ−) + h = 1 (10)

where h was defined in (7): in other words, either X < τ , or X ≥ τ and singly-left-
censored, or X ≥ τ and singly-right-censored, or X is doubly censored. These identities
turn out to be useful later.

From the picture we can write out the self-consistency equation (6) explicitly as,
for x ∈ [0, τ),

V̂ (dx) “ = F u.c.
n (dx) +

∫ x−

t=0

V̂ (dx) dt
τ+x∫∞

y=t
V̂ (dy) dt

τ+y

F s.c.
n (dt) ”

= F u.c.
n (dx) +

V̂ (dx)

τ + x

∫ x−

t=0

F s.c.
n (dt)

∫∞

y=t
V̂ (dy)
τ+y

(11)

ĥ = hn = F d.c.
n ({τ})

where in the denominator of (11) we note that the integral is just ĝ(y) which can be

expressed in various ways, according to (9) and (10), in terms of V̂ |[0,τ) and ĥ. The
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different F ∗.c.
n here denote of course empirical (sub)-distribution functions.

Equation (11) is also satisfied by the true V and F ; from our picture one verifies
quickly that

F u.c.(dx) =
τ − x

τ + x
V (dx), x < τ,

F s.c.(dx) = 2g(x)dx, x < τ,

F d.c.(dx) = hδτ (dx),

(12)

where g and h were defined above and δτ denotes point mass at τ .
These relations all become useful when we actually work out the details of the

consistency proof. The idea of the proof however is quite general. For simplicity we
pretend the parameter is just V .

According to the Kiefer-Wolfowitz definition of an NPMLE, writing PV for the
distribution of a single observation and Pn for the empirical distibution of the data, we
have ∫

log
dP

V̂

dµ
dPn ≥

∫
log

dP
Ṽ

dµ
dPn (13)

where V̂ is the NPMLE of V and Ṽ is any other value of V , while µ is a measure dom-
inating both P

V̂
and P

Ṽ
. A well-proven method for showing consistency in parametric

models is to use this inequality with Ṽ = V , the true parameter value. For n→ ∞ one
hopes to be able to replace Pn by PV , and then to obtain a contradiction with the well-
known fact (from Jensen’s inequality) that

∫
log(dP

V̂
/dµ)dPV ≤

∫
log(dPV /dµ)dPV

with equality if and only if V̂ = V (where we assume identifiability: different V have
different PV ).

In our situation nothing useful comes of this since (supposing the true PV to be

continuous whereas P
V̂

is discrete) the inequality (13) with Ṽ = V becomes a triviality.
Therefore, instead of comparing, on the data, P

V̂
to the true PV , we compare it to PVn

where Vn is of the same nature as V̂ but known (asymptotically) to be close to V . To
be precise, we define the pair (Vn|[0,τ), hn) by

Vn(dx) =
τ + x

τ − x
F u.c.

n (dx), x < τ,

hn = ĥ = F d.c.
n ({τ}).

This estimator is consistent and moreover has a similar discrete character to the NPMLE
(V̂ |[0,τ), ĥ). We learnt this idea from Murphy (1993) where it is applied very effectively to
solve a very difficult problem concerning so-called frailty models for a counting process.

Rather than proceding to study
∫

log(dP
V̂
/dPVn

)dPn, we exploit the convexity and

linearity of our model, according to which the line-segment between V̂ and Vn consists
also of possible parameter values, while PV is linear in V :

P
(1−ε)V̂ +εVn

= (1 − ε)P
V̂

+ εPVn
. (14)

The idea we will use goes back to Jewell (1982), and has been used in various contexts
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by Wang (1985), Pfanzagl (1988), and Groeneboom and Wellner (1992). In most of
these papers the method is applied for a specific model and its general nature not
emphasized. (Also, in most of these previous cases it was not necessary to introduce

the ad hoc estimator Vn; one could study the line-segment between V̂ and the true
parameter value V ). Note especially that (14) holds generally in nonparametric missing
data problems in which the data is (i.i.d. copies of) the result of applying a many-to-one
mapping to a pair (X, T ), where the distribution V of X is completely unknown while
the conditional distribution of T given X is fixed.

Since V̂ beats (1 − ε)V̂ + εVn on the data, and then using the linearity (14), we
have

0 ≥
∫

log
dP

(1−ε)V̂ +εVn

dP
V̂

dPn

=

∫
log

(
(1 − ε) + ε

dPVn

dP
V̂

)
dPn

=

∫
log
(
1 + ε

(
dPVn

dP
V̂

− 1

))
dPn

By concavity of ε 7→ log(1 + εa) this is also concave in ε, with a maximum at ε = 0
hence a derivative with respect to ε at ε = 0 which is nonpositive:

∫ (
dPVn

dP
V̂

− 1

)
dPn ≤ 0,

or, equivalently, ∫
dPVn

dP
V̂

dPn ≤ 1. (15)

Our programme will be to assume, by relative compactness of the space of (possibly

defective) distribution functions, that for each given ω, along some subsequence, V̂
D→

V∞ for some possibly defective distribution V∞. At the same time Vn → V and Pn → PV

in the sense of the Glivenko-Cantelli theorem. Using the self-consistency equation for V̂
it turns out that we know enough about dPVn

/dP
V̂

in order to prove that the left hand
side of (15) converges, along this subsequence, to its natural limit, giving the inequality

∫
dPV

dPV∞

dPV ≤ 1. (16)

On the other hand consider the line segment ε 7→ (1−ε)V∞+εV . By Jensen’s inequality,

ε 7→
∫

log
dP(1−ε)V∞+εV

dPV∞

dPV

is maximal at ε = 1, and strictly maximal there unless PV∞
= PV (which would imply
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V∞ = V ). But this integral equals

∫
log

(
(1 − ε) + ε

dPV

dPV∞

)
dPV

=

∫
log
(
1 + ε

(
dPV

dPV∞

− 1

))
dPV ,

concave in ε, being an average of concave functions. Therefore its derivative at ε = 0 is
nonnegative; strictly so unless V∞ = V . But this derivative equals

∫
(dPV /dPV∞

−1)dPV

so we have the reverse inequality
∫

dPV

dPV∞

dPV ≥ 1 (17)

with equality if and only if V∞ = V . Now the usual argument (from any subsequence
we can extract a convergent sub-subsequence, with the same limit V ) shows that (for

the given ω) along the original sequence V̂
D→ V . This is the required strong consistency

of V̂ . (In fact a closer analysis in this specific problem shows that V̂ is consistent not
just in the sense of weak convergence but also in the supremum norm).

We sketch the beginnings of the calculations which have to be done to carry through
this argument. Recall our expressions (12) for the distribution of the data. These
equations, with (9) and (10), express PV in terms of V or rather (V |[0,τ), h), and hold

also when (V |[0,τ), h) is replaced by (V̂ |[0,τ), ĥ) or (Vn|[0,τ), hn). Substituting into (15),
and letting ĝ and gn be defined as g of (9) and (10) but for the corresponding estimators,
we find
∫

dPVn

dP
V̂

dPn =

∫ τ−

0

dVn

dV̂
(x)F u.c.

n (dx) +

∫ τ−

0

gn(t)

ĝ(t)
F s.c.

n (dt) +
hn

ĥ
F d.c.

n ({τ}) ≤ 1. (18)

Since Vn(dx) = ((τ + x)/(τ − x))F u.c.
n (dx) while the self-consistency equation (11) tells

us
dF u.c.

n

dV̂
(x) = 1 − 1

τ + x

∫ x−

0

F s.c.
n (dt)

∫∞

t
V̂ (dy)
τ+y

we find for the first part of (18) that

dVn

dV̂
(x) =

1

τ − x

(
(τ + x) −

∫ x−

0

F s.c.
n (dt)

∫∞

t
V̂ (dy)
τ+y

)
.

For the second part of (18) the defining equations (9) and (10) for g allow us similarly

to express gn/ĝ in terms of integrals with respect to Fn and V̂ , while the third term is

trivial since hn and ĥ both equal the same quantity.
The upshot of this is that (18) can be written out entirely in terms of (repeated)

integrals with respect to the NPMLE V̂ and the empirical distribution functions F ∗.c.
n .

Since we assume V̂ converges to V∞ and we know the empiricals converge to the true, it
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is now a question of pure analysis to show that (18) converges to its natural limit. Details
are given in Wijers (1991). Most of the analysis is routine; the only difficulties are met
‘at the endpoint’ τ . Restricting the integrals over [0, τ) to integrals over [0, σ], σ < τ ,
convergence is quite easy to obtain. Since the remainder from σ to τ is nonnegative
we get the inequality in the limit provided we only integrate over the smaller intervals.
Finally we let σ increase up to τ and keep the inequality by monotone convergence,
giving us (16). The reverse inequality (17) is true, without any further work, so V∞ = V .

Exercise. Consider the classical random censorship model with G fixed and known.
Take V = F . Prove consistency of the NPMLE (which equals the Kaplan-Meier es-

timator F̂ ) by Wijers’ approach, using just the self-consistency equation for V̂ and

comparing V̂ to Vn defined by Vn(dx) = F u.c.
n (dx)/(1−G(x−). Note that in your proof

the explicit expression for F̂ as product-limit estimator is not made use of.

The sieved NPMLE.

We see in the above that a consistency proof for the NPMLE in a linear-convex model,
in particular in a nonparametric missing data model, can be given without an explicit
expression for the estimator. As we will see, much more is possible if we make use of
some general theory of semiparametric estimators. First however we introduce a variant
of V̂ which in many respects seems to be better behaved.

The above proof of Wijers used the self-consistency equation and the fact that
Vn is dominated by V̂ , but nothing more. Restricting V̂ to only put mass on the
uncensored observations does not change these properties. (It is really rather counter-
intuitive that the NPMLE should place any mass on censored observations at all). We
call the resulting estimator the sieved NPMLE and from now on consider it rather than
the NPMLE itself. The sieved NPMLE is also consistent, by the above proof; it may
also be calculated by iterating the self-consistency equation but in fact can nearly be
calculated explicitly, by another route. Note first that by (9) and (10) we can write

g(t) =

∫ ∞

t

V (dx)

τ + x
=

1

2τ

(
1 − h+

∫ τ

0

τ − x

τ + x
V (dx) −

∫ t

0

2τ

τ + x
V (dx)

)
.

Since the sieved V̂ is actually equivalent to F u.c.
n , one can now rewrite the self-consistency

equation for the sieved estimator as

V̂ (dx) =
F u.c.

n (dx)

1 − 1

τ + x

∫ x

t=0

F s.c.
n (dt)

1
2τ

(
1 − ĥ+

∫ τ

0
τ−x′

τ+x′ V̂ (dx′) −
∫ t

x′=0
2τ

τ+x′ V̂ (dx′)
)
. (19)

Fix the value of

F̂ u.c.(τ) =

∫ τ

0

τ − x

τ + x
V̂ (dx). (20)

Since V̂ puts its mass on the uncensored observations, which will not coincide with any
censored observations, one can always take x′ < t < x in the last (lower, right) integral
in (19). Thus for a chosen value of the next to last integral (20), one can recursively
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calculate V̂ ({x}) at each of its atoms x. Now it is not difficult to check that V̂ ({x}) is a
decreasing function of (trial values of) (20). So we can use (19) to form a new value of
(20) given an old one; this mapping is decreasing ; so if we start with a trial value which
happens to be below the solution (the fixed point of the mapping) we come out with
a value above; and vice-versa. Therefore we propose the following algorithm: given a
trial value of (20) compute a new value by recursive use of (19). Take the average of the
old and new values, and repeat. This algorithm converges at least as fast as ‘interval
halving’, but close to the solution where the mapping is almost linear it is much faster;
quadratic (as the Newton-Raphson algorithm) rather than linear (as interval halving or,
for that matter, the EM algorithm). (By linear convergence we mean that the number
of leading zero’s in the error 0.0000xyz . . . increases at a constant rate; by quadratic
convergence we mean that it doubles at each step. This is usually called exponential
and super-exponential convergence respectively).

Semiparametric models.

In order to explain van der Laan’s (1993b) approach to proving not just consistency but
also asymptotic normality, efficiency, and correctness of the bootstrap for the sieved
estimator V̂ we must explain some general ideas from the theory of semiparametric
models; see van der Vaart (1991b) for a brief and precise summary, or ABGK chapter
VIII for an extensive introduction.

For the time being we remain within our line-segment problem. Let (X, T ) and

(X̃,∆) have the same meaning as above and consider two L2 spaces: L2(V ), the space
of all square integrable functions of X , and L2(PV ), the space of all square integrable

functions of (X̃,∆). When we add a suffix 0 we mean the subspaces of L2 functions of
mean zero. Introduce the operator A : L2(V ) → L2(PV ) defined by

(Ah)(X̃,∆) = E(h(X) | X̃,∆)

and its adjoint A∗ which is easily checked to be

(A∗g)(X) = E(g(X̃,∆) | X).

We indicate norm and inner product in these two spaces by a subscript V and P re-
spectively. Each h ∈ L2

0(V ) corresponds to a one-dimensional parametric submodel in
our large model (all possible V ), passing through the given point V , defined by

dVθ,h ∝ (1 +
1

2
θh)2dV, θ ∈ IR.

Write also Vh = V1,h and note that Vθ,h = Vθh. With one observation of X ∼ Vθ,h

the score function for θ at θ = 0 (i.e., the derivative of the log likelihood), would be

h(X) itself. With one observation (X̃,∆) from PVθ,h
the score function turns out to

be Ah(X̃,∆). We call A the score operator . (Other submodels with the same score
functions could also have been considered; e.g., dVh ∝ (1+h)+dV or dVh ∝ exp(h)dV ).

Suppose we are interested in estimating κ = κ(V ) = V (x0) for a fixed x0. It is easy
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to check that the derivative of κ(Vθ,h) with respect to θ at θ = 0 equals

∫ x0

0

hdV =

∫ ∞

0

h(x)
(
1[0,x0](x) − V (x0)

)
V (dx).

The last integral is the inner product in L2
0(V ) of h with

κ̇ = 1[0,x0] − V (x0).

This makes κ̇ the directional derivative of κ(PVh
) at h = 0 with respect to h ∈ L2

0(V ).
Now in the one-dimensional submodel indexed by h, and with parameter θ ∈ IR,

the Fisher information for θ at θ = 0 based on one observation (X̃,∆) is the expected
squared score:

E((Ah)2) = ‖Ah‖2
P = 〈Ah,Ah〉P = 〈A∗Ah, h〉V . (21)

The derivative of the parameter of interest Vθ,h(x0) with respect to θ, at θ = 0, is

〈κ̇, h〉V (22)

and hence the Cramér-Rao lower bound for n times the variance of an unbiased estimator
of κ based on n i.i.d. observations is

〈κ̇, h〉2V
〈A∗Ah, h〉V

. (23)

According to general theory this quantity, also called the information bound, is also
the optimal asymptotic variance of

√
n(κ̂ − κ) for a so-called regular estimator, or

more precisely, sequence of estimators κ̂ = κ̂n((X̃1,∆1), . . . , (X̃n,∆n)), for the given
submodel; see van der Vaart (1991b), ABGK chapter VIII. We now can vary h, and
look for the largest information lower bound, or in other words the hardest parametric
submodel PVθ,h

, for estimating κ at the common point PV0,h
. A simple calculation shows

that if κ̇ is in the range of A∗A (the so-called information operator, a map from L2(V )
to itself) and therefore an inverse (A∗A)−1h ∈ L2(V ) exists, then this hardest submodel
is given by

h = (A∗A)−1κ̇

with score function
g = A(A∗A)−1κ̇.

Moreover, for this submodel, the information (21), the derivative (22) and the informa-
tion bound (23) all coincide and are equal to

〈(A∗A)−1κ̇, κ̇〉V (24)

Sometimes the information operator cannot be inverted at κ̇ but still the supremum
over h of the information bound (23) is finite. Van der Vaart (1991b) shows that one
has a finite supremum if and only if κ̇ is in the range of A∗. This condition is therefore
a necessary condition for the existence of ‘root n rate, regular’ estimators of κ in our
large model with V varying freely.
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Define
IC(X̃,∆) =

(
A(A∗A)−1κ̇

)
(X̃,∆),

supposing inverse to exist; this is the so-called optimal influence curve for estimating κ
at V . It depends indeed both on the functional κ being estimated and the point V at
which we are working. The reason for the name influence curve is that a necessary and
sufficient condition for an estimator to be optimal at V is that

κ̂− κ =
1

n

n∑

1

IC(X̃i,∆i) + oP(n− 1
2 ). (25)

It is certainly easy to check that if an estimator has this stochastic expansion then it
is asymptotically normal (at root n rate) with asymptotic variance equal to (24), the
greatest lower bound over parametric submodels and hence called the information bound
for our nonparametric model. (If an estimator is asyptotically linear in the sense of (25)
for some fixed function of each observation then this function is called its influence
curve).

The optimal influence curve has several other names and corresponding interpre-
tations. As we saw above it is also the score function Ah for the hardest parametric
submodel (with h = (A∗A)−1κ̇). It is therefore also often called the efficient score.
Another name is canonical gradient. This name comes from considering κ not as a
function of V but of the distribution of one observation PV (assuming identifiability).
Recall that if dVh ≈ (1 + h)dV then dPVh

≈ (1 +Ah)dPV and κ(Vh) ≈ κ(V ) + 〈κ̇, h〉V .
Putting Ah = g or h = (A∗A)−1A∗g we have

dPVh
≈ (1 + g)dPV

while
κ(Vh) ≈ κ(V ) + 〈κ̇, (A∗A)−1A∗g〉V

= κ(V ) + 〈(A∗A)−1κ̇, A∗g〉V
= κ(V ) + 〈A(A∗A)−1κ̇, g〉P.

So if dP′/dP ≈ 1 + g we have the corresponding

κ′ ≈ κ+ 〈IC, g〉P ≈ κ+ 〈IC, dP′

dP
− 1〉P

= κ+

∫
ICdP′.

(26)

The optimal influence curve IC is not the unique gradient (or derivative) since adding to
it a function orthogonal to all possible g = Ah does not change the linear approximation
to κ′−κ. However the present choice is the smallest such derivative in terms of L2 norm.
Note that (26) suggests that if we know the distribution P′ = PV ′ of one observation
is close to PV for a given V then we could estimate κ′ with the empirical analogue
κ+

∫
ICdPn. Choosing the version of the derivative with smallest norm corresponds to

the ‘local, linear estimator’ with smallest variance.
So far most of what we have said has been independent of our specific model.
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The form of the score operator A and its adjoint as conditional expectation operators
is common to all missing data models. For instance, consider the classical random
censorship model with unknown distribution function F = V of the survival times and
fixed distribution G of the censoring times, and suppose we want to estimate functionals
of F such as its value at a specific point t. This is a nonparametric missing data model,
and one may check that the score operator A is given by (Ah)(T̃ ,∆) = E(h(T ) | T̃ ,∆),

its adjoint is (A∗g)(T ) = E(g(T̃ ,∆) | T ), and the optimal influence curve for F (t) is

nothing else than the influence curve of the Kaplan-Meier estimator F̂ (t). For an elegant
proof of this, obtained by transforming from densities to hazard rates, in terms of which
the inversion of the information operator is trivial (it becomes ‘diagonal’, corresponding
to the asymptotic independent increments of the Nelson-Aalen estimator), see Ritov
and Wellner (1988).

In our model (and also in the random censorship problem with fixed censoring
distribution) we have another special feature: linearity. Suppose we want, as above, to
estimate κ = V (x0). The mapping from V to κ is linear but so also is the mapping
from V to PV . This means, assuming identifiability, that the mapping from PV to κ is
also linear and hence our ‘linear approximation’ (26) is actually an equality , which we
can write as:

κ(P′) = κ(P) + EP′(ICP) (27)

where we emphasize by the subscript that the influence curve or derivative is evaluated
at P, not P′. Now we are ready to derive van der Laan’s (1993a) identity for the NPMLE

of a linear parameter in a convex-linear model. Write V̂ , κ̂ = κ(V̂ ), P̂ = P
V̂

for the
NPMLEs of V , κ and P. Since the optimal influence curve depends on the point V at
which it is evaluated we can also write ÎC for the optimal influence curve ‘at V̂ ’. As
usual Pn stands for the empirical distribution of the data.

In (27) take P̂ for P and P for P′. This gives the equality

κ = κ̂+ EP(ÎC).

Since ÎC is also the score function at V̂ of the hardest submodel through V̂ , while V̂ is
the NPMLE, this point on the curve is also the ordinary MLE within this submodel.
Therefore the likelihood equation—derivative of log likelihood or sum of scores equals
zero—is satisified. But this equation can be rewritten as

EPn
(ÎC) = 0.

Therefore we have the identity

κ̂ = κ+ (EPn
− EP)(ÎC).

Some smoothness conditions have to be checked to make sure this identity really
is true. If it is true we are now in an excellent position to study properties of κ̂ by
empirical process theory. To begin with, if {ICV : V ∈ V}, where V if the space of
all parameter values V , is a Glivenko-Cantelli class, then we have consistency of κ̂.
Suppose next we can prove consistency of such a large class of functionals κ that we
can prove consistency of the estimated influence curve ÎC, in the L2(PV ) sense, for the
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specific functional κ of interest. If then {ICV : V ∈ V} is also a Donsker class, we now
have asymptotic normality and even optimality of κ̂, since to put it more informally we
now have

κ̂ ≈ κ+ (EPn
− EP)(IC).

For the sieved NPMLE in the line-segment model all these things are true. Above
we have specified ICV in terms of the derivative κ̇ and the score operator A. It is not
difficult to work out the information operator: one finds

(A∗Ah)(X) = 1[0,τ)(X)
τ −X

τ +X
h(X)

+
2

τ +X

∫ X∧τ

0

∫ ∞

t

h(x)V (dx)

τ + x∫ ∞

t

V (dx)

τ + x

dt

+ 1(τ,∞)(X)
X − τ

τ +X

∫ ∞

τ

τ − x

τ + x
h(x)V (dx)

∫ ∞

τ

τ − x

τ + x
V (dx)

.

It is not possible to explicitly invert this operator. In fact it does not even have a unique
inverse—not surprisingly, since if we parametrise by V our model is not identified;
different behaviours of h past τ can lead to the same parametric submodels. However
it is possible to define one inverse more or less explicitly, see (29) below, in terms of an
infinite series (in fact, a Neumann series, or if you prefer, a Peano series, corresponding
to the inversion of a Volterra type operator). The operators involved are nice enough
that one can show that {ICV : V ∈ V} consists of bounded functions of uniformly
bounded variation, continuous in the appropriate sense in V . This means that we do
have a Donsker class and the approach gives us all the information we want; see van
der Laan (1993b).

In particular it is natural to consider several functionals κ simultaneously; if the
now doubly indexed class of influence curves is a Donsker class, and are continuous
in the appropriate sense, then from consistency we can get joint weak convergence of
all the estimators. If one considers for instance the influence curves simultaneously for
estimating each V (x), x ∈ [0, τ), it turns out that we do not have a Donsker class
any more; the optimal influence curves are not bounded. One can however consider
all V (x), x ∈ [0, σ], for any chosen σ < τ , obtain a Donsker class, and conclude weak

convergence of n
1
2 (V̂ −V ) in D[0, σ]. Alternatively it is quite natural to parametrise not

by (V |[0,τ), h) but by (W |[0,τ ], h) where W (dx) = (τ − x)/(τ + x))V (dx) = F u.c.(dx).
The 1−1 relationship between (W |[0,τ ], h) and the real parameters of interest (F |[0,τ), µ)
is very well-behaved. Moreover, since we have observations directly from F u.c. we can
find gradients for W (x) which are uniformly bounded in x, and the canonical gradients
must have the same property. The set of optimal influence functions for W , indexed
now by V and x, turns out to be a Donsker class and we can prove weak convergence
of n

1
2 (Ŵ − W ) in D[0, τ ] jointly with n

1
2 (ĥ − h). This gives weak convergence and
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asymptotic optimality for (F̂ |[0,σ], µ̂) for each σ < τ .
It seems from the above that it is not possible to estimate V (τ) or F (τ) at root n

rate. We can prove this, for V (τ), by appeal to the earlier mentioned criterion of van der
Vaart (1991b): is 1[0,τ ] −V (τ) in the range of A∗ (the conditional expectation mapping

from mean zero functions of (X̃,∆) to those of X)? We suppose V is continuous and
even has a positive density at x = τ . We can discard the constant, and must discover
if there exists a square integrable g(X̃,∆) such that 1[0,τ ] = E(g(X̃,∆) | X). The cases
x ≤ τ and x > τ give us two equations:

τ − x

τ + x
gu.c.(x)+

2

τ + x

∫ x

0

gs.c.(t)dt = 1, x ≤ τ,

2

τ + x

∫ τ

0

gs.c.(t)dt+
x− τ

τ + x
gd.c.(τ) = 0, x > τ.

The second equation implies that gd.c.(τ) = 0 and that
∫ τ

0
gs.c.(t)dt = 0. So the first

becomes
τ − x

τ + x
gu.c.(x) − 2

τ + x

∫ τ

x

gs.c.(t)dt = 1, x ≤ τ,

which we can rewrite again as

gu.c.(x) − 2

τ − x

∫ τ

x

gs.c.(t)dt =
τ − x

τ − x
, x ≤ τ. (28)

Here gu.c. ∈ L2(F u.c.) while gs.c. ∈ L2(F s.c.). If V has a density bounded away from
zero then both functions are members of L2(Lebesgue). However the right hand side of
(28), the function (τ + x)/(τ − x)), is not square integrable on [0, τ ].

Now a well-known result of Hardy (see, e.g., Ritov and Wellner, 1988) says that if

g̃(x) =
1

x

∫ x

0

g(t)dt,

where g is an L2(Lebesgue) function on the unit interval then ‖g̃‖ ≤ 2‖g‖. This means
that the second term on the left-hand side of (28) is also square integrable, a contradic-
tion.

The argument can be sharpened to show that if V just has a positive density at τ ,
then 1[0,τ ] is not in the range of A∗. So V (τ) cannot be root n rate regularly estimated.
By consideration of the transformation from V to F it follows easily that the same
applies to F (τ).

For completeness we conclude by giving the inverse of the information operator,
derived in van der Laan (1993b): define first the operator B : D[0, τ ] → D[0, τ ] by

(Bh)(x) =
2

τ − x

∫ τ

x

∫ τ

y
h(u)
τ+u

V (du)

g(y)
dy
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and define a function α1 and a number α2, the latter depending on h, by

α1(x) =
2

τ − x

∫ τ

x
dy

g(y)∫ τ

0
dy

g(y)

α2(h) =

∫ τ

0

(∫ u

0

dy

g(y)

) h(u)
τ + u

V (du).

Then the inverse mapping (for κ̇ with support in [0, τ)) is given on [0, τ) by

h = (A∗A)−1(κ̇) = φ1 − α3φ2,

φ1 =

∞∑

i=0

Bi
(τ + ·
τ − · κ̇

)
,

φ2 =

∞∑

i=0

Biα1,

α3 =
α2(φ1)

1 + α2(φ2)
;

(29)

on [τ,∞) the inverse h is only determined as far as the values of the following two
integrals:

∫ ∞

τ

h(x)

τ + x
V (dx) = −

∫ τ

0

∫
τ

y

h(u)
τ+u

V (du)

g(y) dy
∫ τ

0
dy

g(y)

,

∫ ∞

τ

(x− τ)h(x)

τ + x
V (dx) = 0.

Concluding remarks.

It remains to discuss extensions and limitations of the above theory. Van der Laan’s
(1993a) identity is an extremely powerful tool for studying the NPMLE in linear-convex
models, and many other hitherto rather difficult models can be succesfully analysed with
it. When we move from the one-dimensional to the two-dimensional line-segment prob-
lem we find however that, unless K is known, we no longer have this special structure.
However for a given orientation distribution K the identity is applicable for a suitable
length-biased version of F , and the whole analysis of the NPMLE of F for given K
should be very similar to the one-dimensional case. When K varies also, the fact that
the NPMLE for F only depends on K via a single integral (the mean window diameter)
while the NPMLE of K for given F is even easier to study, gives hope that one can
finally make a complete analysis of the original problem using an ad hoc combination
of the ‘F known’ results for K and vice-versa.

We assumed above a convex window, independent lengths and orientations, and a
homogenous Poisson process. One can expect that the NPMLE’s derived here are still
reasonable estimators in other situations. Suppose the window is not convex. Each
transect of the window results in data from several intervals of a single line-segment
process. The joint distribution of all this data is very complex, but the marginal dis-
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tribution for each interval is of the same type as above. Hence if we discard the extra
information coming from single line-segments appearing or not appearing in disjoint
intervals but consider the data from each interval as separate observations, the same
relations hold between the means of the empirical distributions of the data F ∗.c. and the
underlying parameters as in the convex case. This is enough to give consistency of the
NPMLE computed as if we had separate observations. The estimator will still converge
at root n rate but its asymptotic variance will be of different form (since there are now
many small groups of dependent observations). The bootstrap will probably work.

Similarly if the process is not a Poisson line-segment process but just a station-
ary line-segment process, one introduces the so-called Palm distribution of a typical
line-segment (length, orientation) pair. We will have to assume independence in this
bivariate distribution. We still will have the same relations between mean values and
again at least consistency of the NPMLE computed as if the Poisson assumption holds.

If lengths and orientations are not independent, one could consider estimation of
an arbitrary joint distribution. This seems a very difficult task. A sensible approach
would be to partition the orientations into a small number of classes and then estimate
a fixed length distribution for each class. Now the estimator above can be used for each
class separately. Moreover, just to investigate whether or not lengths and orientations
are independent one can compare estimators of length distributions for different classes
of orientations. Bootstrap tests could be constructed.

Finally, as we said at the beginning of the section, many practical applications are
really dealing with a two-dimensional section of a three-dimensional process of planar
objects, producing line-segments in section. However from a model for three-dimensional
planar objects one can make predictions about the two-dimensional sections. Our ap-
proach allows one to separate the edge-effects and the stereological aspects: compare the
NPMLE for the length distribution with that predicted by a given model.

14. Kaplan-Meier for a spatial point process.

This section, based on Baddeley and Gill (1992), again considers a problem from spatial
statistics. The problem is concerned with estimation of distance distributions when a
spatial process is observed inside a finite window W . The boundary of the window
prevents us completely observing all distances and there seems to be an analogy with
censored data. In this case, the analogy turns out to be a useful one. Surprisingly the
analogy between edge effects for point processes and censoring of survival times did not
seem to have been noticed before.

We start by giving some of the background to our problem. The exploratory data
analysis of observations of a spatial point process Φ often starts with the estimation
of certain distance distributions: F , the distribution of the distance from an arbitrary
point in space to the nearest point of the process; G, the distribution of the distance
from a typical point of the process to the nearest other point of the process; and K(r),
the expected number of other points within distance r of a typical point of the process,
divided by the intensity α. Equivalently K is proportional to the sum over all n =
1, 2, . . . of the distribution of the distance from a typical point of the process to the nth
nearest point. Popular names for F , G and K are the empty space function, the nearest
neighbour distance distribution, and the second moment function. For a homogeneous
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Poisson process, F , G and K take known functional forms, and deviations of estimates of
F,G,K from these forms are taken as indications of ‘clustered’ or ‘inhibited’ alternatives;
see Diggle (1983), Ripley (1981, 1988).

However, estimation of F , G and K is hampered by edge effects when the point
process is only observed within a bounded window W . Essentially the distance from a
reference point x in W to the nearest point of the process is censored by its distance to
the boundary of W . Edge effects become rapidly more severe as the dimension of space
increases, or as the distance r of interest increases.

Traditionally, in spatial statistics one uses edge-corrected estimators which are
weighted empirical distributions of the observed distances. The simplest approach is
the ‘border method’ (Ripley, 1988) in which we restrict attention (when estimating F ,
G or K at distance r) to those reference points lying more than r units away from the
boundary of W . These are the points x from which distances up to r can be observed
without censoring. However, the border method throws away an appreciable number
of points; in three dimensions it seems to be unacceptably wasteful, especially when
estimating G. For instance, Baddeley, Moyeed, Howard, Reid and Boyde (1993) gave
a case-study in which the spatial distribution of lacunae in the bone of the skull of a
species of monkey was studied. One might like to consider the data as forty separate
realisations of a stationary point process in IR3 observed through a rather small window
relative to the intensity of points; or alternatively as one realisation observed through a
window consisting of forty sub-windows far apart from one another. One of these forty
pieces of data is shown in figure 1. If the window is the unit cube and one considers
the distance r = 0.2, then the border method requires one to discard almost 80% of the
reference points.

Figure 1. Spatial distribution of lacunae in skull bone, one of forty replicates.

In more sophisticated edge corrections (for estimating K), the weight w(x, y) at-
tached to the observed distance ‖x − y‖ between two points x, y is the reciprocal of
the probability that this distance will be observed under certain invariance assumptions
(stationarity under translation, rotation, or both). Corrections of this type were first
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suggested by Miles (1974) and developed by Ripley, Lantuéjoul, Hanisch, Ohser and oth-
ers; see Stoyan, Kendall and Mecke (1987), Ripley (1988), Baddeley et al. (1991) and
Barendregt and Rottschäfer (1991) for recent surveys; see also Stein (1990), Doguwa
and Upton (1990) and Doguwa (1990) for evidence that the last word still has not been
said on the topic.

Now the estimation problem for F , G and K when observing a point process Φ
through a bounded window W has some similarity with the estimation of a survival
function based on a sample of randomly censored survival times. Closely following
Baddeley and Gill (1992), we develop the analogy and propose Kaplan-Meier or product-
limit estimators for F , G and K. Since the observed, censored distances are highly
interdependent, the standard theory developed in previous sections has little to say
about the statistical properties of the new estimators. In particular, classical optimality
results on the Kaplan-Meier estimator with independent observations are not applicable.
One may however hope that the new estimators are still better than the classical edge
corrections. In fact the border method for edge correction, described above, is analogous
to the so-called reduced sample estimator (discussed in Kaplan and Meier, 1958), a
very inefficient competitor to the Kaplan-Meier estimator obtained by using only those
observations for which the censoring time is at least t when estimating the probability
of survival to time t.

The estimation of F by a Kaplan-Meier type estimator poses another new problem,
since one has a continuum of observations: for each point in the sampling window, a
censored distance to the nearest point of the process. This problem is however nicely
solved using product-integration.

Together with estimates of F , G and K one would like to evaluate their accuracy.
Though the estimators are based on dependent observations one may still hope that in
many situations a linear approximation is possible (the delta method, section 6), leading
to several proposals for variance estimators. It also leads to an evaluation of asymptotic
efficiency in some simple, theoretical situations.

The next subsection recalls some definitions from spatial statistics; then we intro-
duce our Kaplan-Meier style estimator of the empty space function F ; we next discuss
asymptotic properties of this estimator; and finally briefly treat the other functions G
and K.

Spatial statistics.

Let Φ be a point process in IRd, observed through a window W ⊆ IRd. We assume W
is compact and topologically regular (it is the closure of its interior), and denote its
boundary by ∂W .

We may consider Φ both as a random set in IRd and as a random measure. The
problem is, based on the data Φ ∩ W (and knowledge of W itself) to estimate the
functions F , G and K defined as follows.

For x ∈ IRd, A ⊆ IRd let

ρ(x,A) = inf{‖x− a‖ : a ∈ A}
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be the shortest (Euclidean) distance from x to A. Define

A⊕r = {x ∈ IRd : ρ(x,A) ≤ r},
A⊖r = {x ∈ A : ρ(x,Ac) > r},

where c denotes complement. For A closed, these are respectively the dilation and
erosion of A by a ball of radius r:

A⊕r =
⋃

x∈A

B(x, r)

A⊖r =
(
(Ac)⊕r

)c

where B(x, r) is the closed ball of radius r, centre x in IRd.
Assume now that Φ is stationary under translations and has finite positive intensity

α. Thus for any bounded Borel set A ⊆ IRd

EΦ(A) = α|A|d
where |·|d denotes d-dimensional Lebesgue volume. For r ≥ 0 define

F (r) = P{ρ(0,Φ) ≤ r}
= P{Φ(B(0, r)) > 0},

G(r) = P{ρ(0,Φ \ {0}) ≤ r | 0 ∈ Φ}
= P{Φ(B(0, r)) > 1 | 0 ∈ Φ},

K(r) = α−1E{Φ(B(0, r) \ {0}) | 0 ∈ Φ}.
By stationarity the point 0 in these expressions may be replaced by any arbitrary point
x. The conditional expectations given 0 ∈ Φ, used in defining G and K above, are
expectations with respect to the Palm distribution of Φ at 0. Alternative definitions
using the Campbell-Mecke formula (see Stoyan, Kendall and Mecke, 1987) are

G(r) =
E
(∑

x∈Φ∩A 1{ρ(x,Φ \ {x}) ≤ r}
)

EΦ(A)
,

K(r) =
E
(∑

x∈Φ∩A Φ(B(x, r) \ {x})
)

EΦ(A)
,

holding for arbitrary measurable sets A with 0 < |A|d <∞.

A Kaplan-Meier estimator for the empty space function.

Every reference point x in the window W contributes one possibly censored observation
of the distance from an arbitrary point in space to the point process Φ; recall that
F (r) = P{ρ(x,Φ) ≤ r}. The analogy with survival times is to regard ρ(x,Φ) as the
‘distance (time) to failure’ and ρ(x, ∂W ) as the censoring distance. The observation is
censored if ρ(x, ∂W ) < ρ(x,Φ).
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From the data Φ ∩W we can compute ρ(x,Φ ∩W ) and ρ(x, ∂W ) for each x ∈W .
Note that

ρ(x,Φ) ∧ ρ(x, ∂W ) = ρ(x,Φ ∩W ) ∧ ρ(x, ∂W )

so that we can indeed observe ρ(x,Φ) ∧ ρ(x, ∂W ) and 1{ρ(x,Φ) ≤ ρ(x, ∂W )} for each
x ∈W . Then the set

{x ∈W : ρ(x,Φ) ∧ ρ(x, ∂W ) ≥ r}
can be thought of as the set of points ‘at risk of failure at distance r’, and

{x ∈ W : ρ(x,Φ) = r, ρ(x,Φ) ≤ ρ(x, ∂W )}

are the ‘observed failures at distance r’. These two sets are analogous to the points
counted in the empirical functions Y (s), N(ds) respectively in the definition of the
Kaplan-Meier estimator.

Figure 2. Geometry of the Kaplan-Meier estimator. Spatial process Φ indicated by
filled dots. Points x at risk are shaded. Observed failures constitute the curved boundary
of the shaded region.

Geometrically the two sets can be written as

W⊖r \ Φ⊕r, ∂ (Φ⊕r) ∩W⊖r;

that is, within the eroded window W⊖r, consider the region outside the union of balls
of radius r centred at points of the process, and the surface of this union of balls, see
Figure 2.

Definition. Let Φ be a stationary point process and W ⊆ IRd a regular compact set.
The Kaplan-Meier estimator F̂ of the empty space function F of Φ, based on data Φ∩W ,
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is defined via the corresponding Nelson-Aalen esimator by

Λ̂(r) =

∫ r

0

|∂ (Φ⊕s) ∩W⊖s|d−1

|W⊖s \ Φ⊕s|d
ds

1 − F̂ (r) =

r

0

(
1 − Λ̂(ds)

)
= exp(−Λ̂(r))

where |·|d−1 denotes d− 1 dimensional surface area (Hausdorff) measure.

The reduced sample estimator (the standard border correction method) F̂RS of F
is given by

1 − F̂RS(r) =
|W⊖r \ Φ⊕r|d

|W⊖r|d
The Kaplan-Meier estimator F̂ is based on the continuum of observations generated by
all x ∈ W . It is a proper distribution function and is even absolutely continuous, with
hazard rate

λ̂(r) =
|∂Φ⊕r ∩W⊖r|d−1

|W⊖r \ Φ⊕r|d
. (1)

Unbiasedness and continuity.

Our first theorem will be a ‘ratio unbiasedness’ result for the hazard rate estimator λ̂.

Theorem 1. The empty space function F is absolutely continuous with hazard rate

λ(r) =
E|W ∩ ∂Φ⊕r|d−1

E|W \ Φ⊕r|d
for any compact regular window W . In particular, replacing W by W⊖r, our estimator

λ̂ is ‘ratio unbiased’ in the sense that the ratio of expectations of the numerator and
denominator in (1) is equal to the true hazard rate λ(r) (as long as the denominator
has positive probability of being nonzero).

Thus F̂ (r) respects the smoothness of the true empty space function F . The reduced-
sample estimator is not even necessarily monotone.

The theorem is proved via two regularity lemmas. The first is an example of
Crofton’s perturbation or ‘moving manifold’ formula, see Baddeley (1977), Crofton
(1869). In our case it says that the volume, within a fixed region, of a union of (possibly
overlapping) balls of radius r can be determined by imagining the balls as growing at
constant rate with radius s varying from 0 up to r; the finally achieved total volume
equals the integral of the surface area of the intermediate objects: take A = Φ ∩W ,
Z = W .

Lemma 1. Let Z ⊆ IRd be a compact regular set and A ⊆ IRd any nonempty closed
set. Then for r ≥ 0

|Z ∩ A⊕r|d = |Z ∩A|d +

∫ r

0

|Z ∩ ∂A⊕s|d−1ds.
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The lemma is proved in Baddeley and Gill (1992) by applying the so-called co-area
formula of geometric measure theory, see Federer (1969, p. 251). (It is also shown there
that the integrand in the formula is measurable).

The second lemma states that the integrand |Z ∩ ∂Φ⊕s|d−1 is uniformly bounded
(over possible realisations of Φ) in such a way that dominated convergence can be used
to justify interchanges of expectation and integration or differentiation (w.r.t. s).

Lemma 2 (boundedness). For any regular compact set Z

|Z ∩ ∂Φ⊕r|d−1 ≤ d

r
|Z⊕r|d ∧ Φ(Z⊕r)ωdr

d−1

where ωd = |∂B(0, 1)|d−1 = 2πd/2/Γ(d/2).

A formal proof of Lemma 2 is given in Baddeley and Gill (1992). Informally, note that
the second term on the right is a trivial bound on the left hand side, since ωdr

d−1 =
|∂B(0, r)|d−1. For the first term, fix a realization of Φ and let yi, i = 1, . . . , m be the
distinct points of Φ ∩ Z⊕r. The surface whose area is taken on the left hand side is
the surface of the union of (possibly overlapping) balls radius r and centres y1, . . . , ym,
intersected with Z. Note that the factor d/r equals the ratio of surface area to volume
of the d-dimensional ball B(0, r). Consider the segment of this ball subtended by some
given subset of its surface: that is, the union of all line-segments joining a point in the
given part of the surface to the centre of the ball. Again, the ratio of ‘outside’ surface
area to volume of the segment is d/r. Now the surface in question, Z ∩ ∂Φ⊕r, can be
split into m disjoint pieces, each of which is the outer surface of a (disjoint) segment
of one the m balls. The total area equals d/r times the volume of the union of the
segments. But the union of the segments is contained in the dilated window Z⊕r, so
the volume of this supplies an upper bound.

Let Φ be a point process in IRd and W ⊂ IRd a regular compact set. The following
identities follow from Lemma 1:

|W ∩ Φ⊕r|d =

∫ r

0

|W ∩ ∂Φ⊕s|d−1 ds, (2)

|{x ∈W : ρ(x,Φ) ≤ ρ(x, ∂W ), ρ(x,Φ) ≤ r}|d =

∫ r

0

|W⊖s ∩ ∂Φ⊕s|d−1 ds, (3)

|W⊖r \ Φ⊕r|d = |W |d −
∫ r

0

|∂(W⊖s \ Φ⊕s)|d−1 ds. (4)

Moreover (by standard measurability arguments from stochastic geometry) the inte-
grands are well defined random variables for each fixed s and are almost surely measur-
able and integrable functions of s.

We can now prove Theorem 1. By Fubini,

E|W ∩ Φ⊕r|d = E

∫

W

1{x ∈ Φ⊕r} dx

=

∫

W

P{x ∈ Φ⊕r} dx
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= F (r) |W |d. (5)

Since |W ∩ Φ⊕r|d is absolutely continuous, with derivative given in Lemma 1 and bound-
ed as in Lemma 2, its expectation is absolutely continuous too, with derivative

f(r)|W |d = E|W ∩ ∂Φ⊕r|d−1. (6)

But complementarily to (5)

E|W \ Φ⊕r|d = (1 − F (r)) |W |d. (7)

Dividing (6) by (7) we obtain the first result of the theorem. The rest follows by
replacing W with W⊖r.

Discretisation and the classical Kaplan-Meier estimator.

In practice one would not actually compute the surface areas and volumes for each
s ∈ [0, r] in order to estimate F (r). Rather one would discretize W or [0, r] or both.

A natural possibility is to discretize W by superimposing a regular lattice L of
points, calculating for each xi ∈ W ∩ L the censored distance ρ(xi,Φ) ∧ ρ(xi, ∂W ) and
the indicator 1{ρ(xi,Φ) ≤ ρ(xi, ∂W )}. Then one would calculate the ordinary Kaplan-
Meier estimator based on this finite dataset.

Our next result is that as the lattice becomes finer, the discrete Kaplan-Meier
estimator converges to the ‘theoretical’ continuous estimator F̂ .

Theorem 2. Let F̂L be the Kaplan-Meier estimator computed from the discrete obser-
vations at the points of W ∩ L, where L = εM + b is a rescaled, translated copy of a
fixed regular lattice M . Let

R = inf{r ≥ 0 : W⊖r ∩ Φ⊕r = ∅}.

Then as the lattice mesh ε converges to zero, F̂L(r) → F̂ (r) for any r < R. The
convergence is uniform on any compact subinterval of [0, R).

Proof. For any regular compact set A ⊆ IRd one has

εd#(L ∩A) → c|A|d as ε→ 0

where c is a finite positive constant. Hence the functions

NL(r) =
# (L ∩ {x ∈W : ρ(x,Φ) ≤ ρ(x, ∂W ), ρ(x,Φ) ≤ r})

#(L ∩W )
|W |d,

YL(r) =
# (L ∩ (W⊖r \ Φ⊕r))

#(L ∩W )
|W |d

converge pointwise to

N(r) = |{x ∈W : ρ(x,Φ) ≤ ρ(x, ∂W ), ρ(x,Φ) ≤ r}|d, (8)

Y (r) = |W⊖r \ Φ⊕r|d (9)
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respectively. Since NL(r) is increasing in r and the limit is continuous, NL → N
uniformly in r. Similarly, YL is decreasing and by (4) its limit is continuous, so it also
converges uniformly.

Given (3) and by continuity of the mapping from (N, Y ) to Λ̂ =
∫

dN/Y (see
sections 4 and 6) the discrete Nelson-Aalen estimator

Λ̂L =

∫
dNL

YL

converges uniformly to Λ̂ on a closed interval where Y is strictly positive. By continuity
of the product-integral mapping (section 4) F̂L converges to F̂ . ⊔⊓

Further remarks on computational aspects can be found in Baddeley and Gill
(1992). That paper also contains simulation results pointing to a rather satisfactory
behaviour of the Kaplan-Meier estimator compared to the reduced sample estimator,
though it is certainly not better in all situations.

Asymptotic properties.

A relevant ‘large sample’ situation is one in which the edge problem remains equally
severe as in the ‘small sample’ case. So one would like to consider observation of the
same point process through a sequence of increasingly large windows W , in such a way
that (e.g.) the proportion of the window within distance r from the boundary stays
appreciable. The simplest such situation is when the window W is the union of n small
and distantly spread windows of fixed size and shape, so that to a good approximation
one simply has n independent replicates of the situation considered in the previous
section. Asymptotics as n → ∞ are now easy to derive from the functional delta-
method, taking as starting point a law of large numbers and a (joint) central theorem
for a sum of i.i.d. replicates of the ‘number of failures’ and the ‘number at risk’ processes
N and Y defined by (8) and (9) above. If the distance τ satisfies EY (τ) > 0, the facts
that N and Y are monotone and bounded by |W |d give the uniform LLN and CLT on
[0, τ ] without further restrictions (for the CLT, use the nice result of E. Giné and J.
Zinn that the central limit theorem holds for i.i.d. sums of a uniformly bounded process
Z satisfying E|Z(s) − Z(t)| ≤ c|s− t|; see van der Vaart and Wellner, 1993). Hence F̂
is consistent and asymptotically normal.

We even have a bootstrap result from the Giné-Zinn equivalence theorem mentioned
in Section 11 (though a jack-knife theorem would probably be more useful in practice).
In practice one may well have a number of replicates but typically the number n will be
small (say 5 to 10) and the windows not all of the same shape and size. Consequently the
formal asymptotics cannot be expected to be very useful. We therefore only sketch them,
indicating how they can be used to suggest rough variance estimators for practical use,
and how theoretical efficiency calculations can be done in simple and stylized situations.

Even if we do not have i.i.d. replicates, it may still be reasonable to assume a
law of large numbers and a central limit theorem for the suitably normalized processes
N and Y , based now on all the data. The functional delta-method together with
differentiability of the product-integration mapping tell us that if the fluctuations of the
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random functions

|W⊖r \ Φ⊕r|d
|W |d

,

∫ r

0
|W⊖s ∩ ∂Φ⊕s|d−1ds

|W |d
; 0 ≤ r ≤ τ

about their expectations are uniformly small and not too violent (in the sense that a
functional central limit theorem holds as W gets larger in some way), then one may

approximate F̂ (r) − F (r) well for 0 ≤ r ≤ τ by the linear expression

(1 − F (r))

∫ r

0

(|W⊖s ∩ ∂Φ⊕s|d−1 − |W⊖s \ Φ⊕s|dλ(s))

y(s)
ds (10)

where y(s) = E|W⊖s \ Φ⊕s|d = (1 − F (s))|W⊖s|d.
If W is a union of small, distant sub-windows Wi then (10) is also a sum over the

Wi of mean-zero terms, given by replacing W by Wi in (10) except in the definition of

the function y. The variance of F̂ (r) could therefore be approximated by the sum of
the squares of the summands in (10), in which one would have to replace λ(·) and F
by their Kaplan-Meier estimates. This is similar to a jackknife or bootstrap analysis
(which one could use if the Wi were of the same size and shape).

The computational problems involved in this procedure can be eased by the same
sampling procedure as was used to approximate F̂ itself: choose points on a regular
lattice intersected with Wi, or many independent random points uniformly distributed
over Wi, and average the ‘influence function’ for one point x:

(1 − F (r))

(
1{ρ(x,Φ) ≤ r, ρ(x,Φ) ≤ ρ(x, ∂W )}

y(ρ(x,Φ))
−
∫ r∧ρ(x,Φ)∧ρ(x,∂W )

0

λ(s)

y(s)
ds

)
. (11)

Expression (10) is exactly the integral over x ∈ W of (11), with respect to Lebesgue
measure, as can be seen by recognising |·|d and |·|d−1ds in (10) as integrals over x and
then interchanging orders of integration. In order to implement the proposal one only
has to numerically tabulate an estimate of the function

∫ r

0
(λ(s)/y(s))ds together with

the functions y and 1−F . After (11) has been calculated for points sampled from each
subwindow Wi, one must average, square, and add over subwindows.

Alternatively one can write down the variance of the linear approximation (10), or
rather, the integral over x ∈ W of (11), in terms of the covariance structures of the
random function r(x) = ρ(x,Φ) and of the window W . First of all we rewrite (10) as

−(1 − F (r))

∫

x∈W

∫

s∈(0,r]

(
d(s)1{x 6∈ Φ⊕s} + 1{x 6∈ Φ⊕s}λ(s)ds

y(s)

)
1{ρ(x, ∂W ) ≥ s}dx.

After some further calculation one then arrives at

cov(F̂ (r), F̂ (r′)) ≈ (1 − F (r)) (1 − F (r′)) ·

·
∫

x∈IRd

r∫

s=0

r′∫

s′=0

g(ds, ds′, x)C(W⊖s,W⊖s′)(−x)dx.
(12)
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Here, for A,B ⊆ IRd and x ∈ IRd, C(A,B)(x) is the set cross-covariance function

C(A,B)(x) = |A ∩ (B ⊕ x)|d,

B ⊕ x being the translate of B by x, while g is given by

g(ds, ds′, x) =
1

y(s)y(s′)
(σ(ds, ds′)(x) + σ(ds, s′)(x)λ(s′)ds′

+ σ(s, ds′)(x)λ(s)ds+ σ(s, s′)(x)λ(s)λ(s′)dsds′)

(13)

with
σ(s, s′)(x) = P{Φ⊕s 6∋ 0, Φ⊕s′ 6∋ x}

= P{y 6∈ Φ⊕s, x+ y 6∈ Φ⊕s′}
= P{ρ(y,Φ) > s, ρ(x+ y,Φ) > s′}
= P{Φ(B(y, s)) = 0, Φ(B(x+ y, s′) = 0}

for arbitrary y ∈ IRd.
One could try to estimate σ and plug the estimate into (12) using estimates of

y(s) = (1 − F (s))|W⊖s|d and λ(·) also. Note that σ is actually a bivariate survival
function so one could in principle use a Dabrowska-type estimator (see section 12)
or just a bivariate reduced sample estimator for this purpose. However the amount
of computation needed is very daunting, and the final result may be so statistically
inaccurate as to be quite useless. Practical experience is badly needed here.

Finally, (10)–(12) are the starting point of a theoretical efficiency calculation, which
we perform below.

The sparse Poisson limit.

Here we consider asymptotic variances of the Kaplan-Meier and reduced sample influ-
ence functions on a fixed window W for a Poisson process whose intensity α is sent
to zero. This is the asymptotic variance of the Kaplan-Meier and reduced sample esti-
mators in the large-sample case when the data consists of many independent replicates
of a fixed-intensity Poisson process observed through an asymptotically small window.
‘Many replicates’ justifies looking at the influence function, and the case of a vanishing
intensity but fixed window is the same as a vanishing window, fixed intensity. In fact if
either intensity or window is small, any stationary process looks like a Poisson process.

There are just two situations to consider: (i) no random point in W , with proba-
bility e−α|W |d = 1 +O (α), and (ii), one random point in W at a position X uniformly
distributed over W , occurring with probability α|W |de−α|W |d = α|W |d + O

(
α2
)
; the

remaining possibilities have probability O
(
α2
)
.

The influence function (10) for Kaplan-Meier is the difference of two terms: a part
depending on surface areas at some distances from a point of Φ, and a part depending
on volumes at risk, and involving the hazard rate of the empty space function. In case
(i) only the second part is present and is of order α; in case (ii) the first part is also
present and is of constant order.
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The empty space function for the Poisson process is

F (r) = 1 − exp
(
−α|Br|d

)

and its hazard rate is

λ(r) =
d

dr
(− log(1 − F (r))) = α|∂Br|d−1

where Br = B(0, r) is a ball of radius r, so that |Br|d = rdωd/d and |∂Br|d−1 = rd−1ωd.
The ‘expected number at risk’ is

y(r) = (1 − F (r)) |W⊖r|d.

In case (i), no random points in W , the influence function (10) for Kaplan-Meier is
therefore

(1 − F (r)

{
−
∫ r

0

α|∂Bs|d−1|W⊖s|d
|W⊖s|de−α|Bs|d

ds

}

= (1 − F (r))

{
−
∫ r

0

α|∂Bs|d−1e
α|Bs|dds

}

= e−α|Br|d
[
eα|Bs|d

]r
0

= −
(
1 − e−α|Br |d

)

= −α|Br|d + O
(
α2
)
.

In case (ii) the influence function is

(1 − F (r))

{∫ r

0

|∂B(X, s)∩W⊖s|d−1 − α|∂Bs|d−1|W⊖s \B(X, s)|d
|W⊖s|de−α|Bs|d

ds

}

= e−α|Br |d

∫ r

0

|∂B(X, s)∩W⊖s|d−1

|W⊖s|de−α|Bs|d
ds+ O (α)

=

∫ r

0

|∂B(x, s)∩W⊖s|d−1

|W⊖s|d
ds+ O (α) .

To check this, observe that the expected influence function is therefore, to first order in
α,

−α|Br|d + α|W |dE
(∫ r

0

|∂B(X, s)∩W⊖s|d−1

|W⊖s|d
ds

)

= −α
(
|Br|d − |W |d

∫ r

0

E|∂B(X, s)∩W⊖s|d−1

|W⊖s|d
ds

)
.

By a well-known result of integral geometry (Santaló, 1976, p. 97) the expectation in
the numerator is

E|∂B(X, s)∩W⊖s|d−1 =
|∂Bs|d−1 |W⊖s|d

|W |d
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so that the expected influence function is

−α
(
|Br|d − |W |d

∫ r

0

|∂Bs|d−1 |W⊖s|d
|W⊖s|d |W |d

ds

)

= −α
(
|Br|d −

∫ r

0

|∂Bs|d−1ds

)

= 0.

What we are really looking for, the variance of the influence function, is to first order
just the expectation of the square of the ‘area of failures’ term from case (ii) (since case
(i) is now O

(
α2
)
):

α|W |dE
(∫ r

0

|∂B(X, s)∩W⊖s|d−1

|W⊖s|d
ds

)2

.

For the reduced sample estimator, the calculations are similar but easier. In case (i)
the estimator is identically zero; in case (ii) it is

F̂RS(r) = |B(X, r) ∩W⊖r|d/|W⊖r|d.

Since F (r) = 1 − exp(−α|Br|d) = α|Br|d + O
(
α2
)

the influence function (= estimator
− estimand in this linear case) is in case (i)

−α|Br|d + O
(
α2
)
;

in case (ii)
|B(X, r)∩W⊖r|d

|W⊖r|d
+ O (α) .

The expectation of the influence function is, to first order,

−α|Br|d + α|W |dE (|B(X, r)∩W⊖r|d) /|W⊖r|d

= α

{
−|Br|d + |W |d

|Br|d|W⊖r|d/|W |d
|W⊖r|d

}

= 0,

as should be the case. The variance is

α|W |dE
(( |B(X, r) ∩W⊖r|d

|W⊖r|d

)2
)

+ O
(
α2
)
.

The conclusion is that we must calculate and compare the expected squared values of
∫ r

0

|∂B(X, s)∩W⊖s|d−1

|W⊖s|d
ds
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and
|B(X, r) ∩W⊖r|d

|W⊖r|d
for X ∼ uniform(W ).

For convenience in calculation, we will take W to be the d-dimensional unit cube
centred at ( 1

2 , . . . ,
1
2 ), and replace the Euclidean metric || · || by the L∞ metric in

the definition of ρ and A⊕r, A⊖r. Thus F becomes the ‘empty square space’ function
obtained by replacing B(x, r) by a cube B∞(x, r) of centre x and side length 2r.

We need to consider all possible ways the cubes B∞(X, r) and W⊖r intersect. For
given X = x ∈ W , as r increases, initially B∞(x, r) is entirely contained in W⊖r, then
one-by-one the faces of B∞(x, r) pass through faces of W⊖r.

By symmetry we may take X uniformly distributed on the simplex {x : x1 < x2 <
. . . < xd <

1
2}. The different transitions then occur as the value 2r passes through x1,

then x2, . . . , then xd; and then as (1 − 2r) passes through xd, xd−1, . . . , x1. The latter
cases are only relevant when r > 1/4.

After expressing the volume and surface area contributions in terms of the xi in
each case, we integrate over r (for Kaplan-Meier only) and then over x.

In one dimension the variance of n1/2(F̂ (r)−F (r)) is approximately (ignoring terms
of order O(α2)) equal to α times the following expression:

{
2r + (1 − 4r) log(1 − 2r) − 1

2
(log(1 − 2r))2 for 0 ≤ r ≤ 1

4
,

2r +
∫ 2r

1
2

log u log(1 − u)du− 2r log 2r log(1 − 2r) for 1
4 ≤ r < 1

2 .

For the reduced sample estimator |Φ⊕r ∩W⊖r|d/|W⊖r|d, the corresponding formula is
{

4r2(1 − 8r
3 )/(1 − 2r)2 for 0 ≤ r ≤ 1

4 ,
(8r − 1)/3 for 1

4
≤ r < 1

2
.

These functions are plotted in Figure 3 together with the corresponding curves for two
and three dimensions; the latter have been calculated (by Mathematica) with a mixture
of computer algebra and numerical integration (for integrals over s) and Monte-Carlo
integration (for integrals over x). The new estimator is superior over a broad range of
distances r, but surprisingly deteriorates at very large distances. Apparently, the kind
and amount of dependence here has destroyed the optimality of Kaplan-Meier in the
classical i.i.d. case.
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Figure 3. Sparse-limit asymptotic variances (divided by α). Solid lines: reduced
sample estimator; dotted lines: Kaplan-Meier estimator.

Figure 4 shows the asymptotic relative efficiency (ratio of variances of reduced sam-
ple to Kaplan-Meier) in each dimension. The greatest gain is achieved at intermediate
distances (near 1

4); only for very large distances (near 1
2 ) is there a loss in efficiency. As

the dimension d increases, and hence as edge effects become more severe, Kaplan-Meier
represents an ever more convincing improvement on the reduced sample estimator.
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Efficiency = var(RS)/var(KM)
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Figure 4. Asymptotic relative efficiency in 1, 2 and 3 dimensions.

The nearest neighbour distance function G.

A Kaplan-Meier estimator for G is more immediate than for F : for each point xi of
the process Φ observed in the window W , one has a censored distance from xi to the
nearest other point of Φ, censored by its distance to ∂W . Counting ‘observed failures’
and ‘numbers at risk’ as for censored data:

NG(r) = #{x ∈ Φ ∩W : ρ(x,Φ \ {x}) ≤ r, ρ(x,Φ \ {x}) ≤ ρ(x, ∂W )}

and
Y G(r) = #{x ∈ Φ ∩W : ρ(x,Φ \ {x}) ≥ r, ρ(x, ∂W ) ≥ r}

one may check that these satisfy the same mean-value relation as for ordinary randomly
censored data,

ENG(r) =

∫ r

0

EY G(s) ΛG(ds),

where ΛG(ds) = G(ds)/(1−G(s−)), and G was defined at the beginning of this section.
This motivates a Nelson-Aalen estimator

Λ̂G(r) =

∫ r

0

NG(ds)

Y G(s)
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and a Kaplan-Meier estimator

1 − Ĝ(r) =

r

0

(
1 − Λ̂G(ds)

)
.

In this case there is no need for G to have any special continuity properties; in fact, G
may be degenerate as in the case of a randomly translated lattice.

Linearization can be applied to Ĝ − G just as well as for F̂ − F and the results
used to motivate variance estimators through analogues of (10)–(12). Sparse Poisson
asymptotics can also be carried out in the same way. The results show a more marked
superiority of Kaplan-Meier to the reduced sample estimator than in the case of the
empty-space function. Moreover, the deterioration of the Kaplan-Meier estimator at
large distances is not observed any more. The situation is fundamentally different
from the empty space statistic since now each point x of the process Φ contributes
one observation, rather than each reference point x in the window W . The asymptotic
variance is of constant order rather than of the order α. The ‘leading term’ in the sparse
Poisson asymptotics comes from the ‘number of failures’ part of the influence function,
for the case when exactly two points are observed in the window W .

The K function.

K(r) was defined as 1/α times the expected number of points within distance r of a
typical point of the process. The possibility of defining a Kaplan-Meier estimator for
K(r) is not so obvious until one notices that αK(r) equals the sum of the distribution
functions of the distance from a typical point to the nearest, second nearest, and so on.
For each of the distance distributions one can form a Kaplan-Meier estimator, since the
distance from a point x ∈ Φ to its kth nearest neighbour is also censored just as before
by its distance to the boundary. One can check that the sequence of Kaplan-Meier
estimators always satisfies the natural stochastic ordering of the distance distributions.
The theory we gave for F and sketched for G can also be worked through for K.

Sparse Poisson asymptotics for K turn out to coincide exacly with those for G. The
reason for this is that the cases of three or more points in the window have negligible
probability compared to that for two points; so the ‘leading terms’ for G and K are
the same. For estimating K a large number of sophisticated edge-corrections exist; see
Ripley (1988), Stein (1990). It turns out that as far as the sparse Poisson asymptotics
are concerned, all these corrections are just as good, and better than Kaplan-Meier,
which itself is better than the classical border correction method (the reduced sample
estimator). The sophisticated edge-corrections are in practice more complicated to
compute than the Kaplan-Meier estimator, so it seems that (as is fair) the more work
one does, the better the result. It is disappointing (to this author!) that Kaplan-Meier
is not in the first rank, and surprising that the sophisticated edge-corrections can hardly
be distinguished from one another.

More details are given in Baddeley and Gill (1992).
One might wonder whether it is possible to improve the Kaplan-Meier estimators

of F,G and K by considering the observed distances as interval-censored rather than
just right censored. This seems possible since for a point x ∈W which is closer to ∂W
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than to other points in Φ∩W , one does know that its distance to Φ \ {x} is not greater
than its distance to (Φ \ {x}) ∩W ; so

ρ(x, ∂W ) ≤ ρ(x,Φ \ {x}) ≤ ρ(x, (Φ \ {x}) ∩W )

Similar statements can be made for the distance to the kth nearest neighbour. However,
treating this data as ‘randomly interval-censored data’ would produce asymptotically
biased estimators, since the upper limit ρ(x, (Φ \ {x}) ∩W ) is strongly dependent on
ρ(x,Φ \ {x}), unlike the lower limit ρ(x, ∂W ).

15. Cryptography, statistics and the generation of randomness.

This final section is quite independent of the rest of the lecture notes. It is concerned
with the subject of random number generation and to be more specific, with an approach
to the subject developed over the last decade by computer scientists working in the area
of cryptography. What I have to say on this subject I have learnt from the master’s
thesis of Brands (1991), which not only surveys the results of the cryptographic theory
but also the basic ingredients in it (number theory, complexity theory including Turing
machines and polynomial time computation, and so on). Another recent survey is by
Luby (1993).

The traditional approach to random number generation is extensive and effective.
However in my opinion it fails to explain why it works. It consists of a large body of
useful information but somehow misses the point: in what way can a completely de-
terministic algorithm be said to simulate randomness? In fact ‘probability theory’ is
notably absent in treatments of the usual approach to random number generation, which
mainly discuss how to find long cycles of iteratively and deterministically determined
integers which over a complete cycle have nice uniformity properties. Even ‘state of the
art’ random number generators can turn out to be rather poor for some applications;
see, e.g., Ferrenberg, Landau and Wong (1992), though an algorithm intended for use
on a PC may not be the most sensible thing to use for a massive supercomputer simu-
lation! See also Knuth (1981) for the classical theory; Marsaglia and Zaman (1991) for
more recent developments, and Wang and Compagner (1993) for a nice, less orthodox,
approach.

In cryptography there is a need for specially reliable random number generators.
The reason for this is that the best key to a secret code is a long and completely
random key (it is hardest to guess). For effective use in practice the key should however
be produced deterministically, by a compact and fully automatized random number
generator. However, if your adversary knows what generator you have used it may
not be so difficult to guess your key after all. It is rather nice that cryptographers
have not just invented their own random number generators but even developed an
elaborate and elegant theory, containing nice probabilistic and even statistical ideas,
which actually explains why a random number generator can simulate randomness.
This theory involves the intriguing notions of one-way functions and hard-core bits;
it is built on algorithmic complexity theory and in particular the distinction between
polynomial and non-polynomial time algorithms as separating tractable from intractable
problems; and it relies on the generally accepted (though still unproven) intractability
of certain problems such as the factorization of large integers. I will argue that the
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theory is highly relevant to the actual use of random number generators in statistical
simulation experiments, bootstrapping, randomized optimization algorithms, and so on.

A classical random number generator is an algorithm which, on given a starting
number called the seed, produces a sequence of numbers according to a simple deter-
ministic recursion. Usually the numbers are integers in a given, finite range, hence
the numbers (eventually) follow a, usually rather long, cycle. For instance, the very
well-known linear congruential generator, starting with an integer seed x0, produces a
sequence of integers xn according to the rule

xn = axn−1 + b modm (1)

where the the integers a, b and m are fixed integer parameters of the method. If the
parameters have been chosen appropriately the numbers xn follow a cycle which is
actually a permutation of the set of all integers modulo m, ZZm = {0, 1, . . . , m − 1}.
Moreover the numbers

un = xn/m

behave reasonably like independent uniform (0, 1) random variables and

yn = ⌊2un⌋

as independent Bernoulli ( 1
2) variables. For good quality results m should be quite large,

e.g., it should be at least a 60 bit integer (see Knuth, 1981). From uniformly distributed
variables one can in principle produce numbers from any other desired distribution.

Since a random uniform(0, 1) random variable is usually approximated on the
computer by a number of fixed, finite precision, and since the successive bits in a
uniform (0, 1) random variable are independent Bernoulli (1

2 ) variables, a random num-
ber generator which produces Bernoulli( 1

2
) variables is all we really need. In fact for

some choices of m the ‘lower’ (less significant) bits of the numbers produced by a linear
congruential generator are a good deal less random than the higher bits and one may
prefer to just build everything from the simulated independent Bernoulli ( 1

2) trials, or
fair coin tosses, yn. Note that yn is the ‘first bit’ of the number un expressed as binary
fraction.

The new generators from cryptography theory are not much different from the
classical generators. For example, the so-called quadratic-residue or QR-generator which
we study in more detail later is defined as follows: given suitably chosen integers x0 and
m, define

xn = x2
n−1 modm (2)

and let
yn = xn mod 2

be the ‘last bit’ of xn. Then we will show that the yn can well approximate fair Bernoulli
trials. The theorem which guarantees this (under a certain unproven but highly re-
spectable assumption) is an asymptotic theorem, for the case that the length k of the
numbers concerned, in their binary representation, k = ⌈log2m⌉, converges to infinity.
Preliminary testing shows that a similar size of m as for the linear congruential gen-
erator produces results of similar quality (Brands, 1991). A minor difference from the
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classical generators is that what would be a fixed parameter m is now also considered
part of the seed. The only parameter of the QR-generator is in fact the chosen length
k of the numbers xn produced inside the generator.

The idea in cryptography is that a random number generator is not a device for
creating randomness but rather a device for amplifying randomness. If we consider the
seed as truly random, then the output sequence yn is also random, and we may ask how
close its distribution is to the distribution of fair Bernoulli trials (the answer depending
on the distribution of the seed, of course). This is very similar to the situation in chaotic
dynamical systems in which a small random perturbation of the initial conditions pro-
duces a complete, very random process whose distribution is essentially unique (usually
the perturbation has to be absolutely continuous with respect to Lebesgue measure but
otherwise does not have to be specified).

If the seed (e.g., for the QR-generator, x0 and m together) is chosen at random
the output sequence yn is also random but clearly its (joint) distribution is highly
degenerate, especially if the output sequence is long. Suppose we generate y1, . . . , yl

where the number l is a (low degree) polynomial in k. Specifying x0 and m requires
2k binary digits; we will indeed show later how it is done using about 2k fair Bernoulli
trials (one might conceivably use real-life fair coin tosses). Think of l = l(k) as being
something like k4 and forget the factor 2. Then we are talking about using, e.g., 100
fair coin tosses to simulate 1004: we put a hundred coin tosses in, we get a hundred
million out. The joint distribution of y1, . . . , yl is highly degenerate; there are only 2k

possible, equally likely, values for the whole sequence (assuming they are all different)
out of an enormous 2l equally likely values of a true random sequence. However the
degeneracy can be so well hidden that we are not aware of it. And this must hold for
the classical random number generators which are routinely used by statisticians and
others at exactly the kind of scale described here.

Obviously the degeneracy can be found if one looks for it: if you want a good test
of whether y1, . . . , yl are truly random or only pseudo-random, check if the sequence
you have is one of the 2k sequences produced by the generator or one of the other 2l

sequences possible with a truly random sequence. Comparing the numbers 2100 with
2100 000 000 one sees our test constitutes a statistical test with size about zero and power
about one when applied to this generator. There is a big drawback to this test however:
it takes a lot of time to compute. Producing a single sequence of 100 000 000 numbers
for our statistical simulation experiment is very feasible, but producing all 2100 possible
sequences is definitely not feasible. So the just mentioned statistical test is infeasible;
but there might well be tests which are feasible to compute but which just as conclusively
detect pseudo-randomness from true randomness.

The aim of cryptography theory is to construct random number generators such
that no practically feasible method can show up the difference between a generated
sequence and a true random sequence. The phrase ‘no practically feasible’ sounds
vague but can in fact be made completely precise through the notions of algorithmic
complexity theory. It should be taken in an asymptotic sense, since only asymptotically
(as the size of a given problem increases) can one distinguish between tractable and
intractable problems. Practically feasible, or tractable, means polynomial time: that is,
the running time of the algorithm used to compute the test is at most polynomial in
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the size of the problem (here, we measure size by input length k, or equivalently, by l).
‘Showing up the difference’ between a generated sequence and a true random sequence
can also be made precise. We have a statistical testing problem with, as null hypothesis,
true randomness; as alternative, the distribution inherited by the generated sequence
from the distribution of the seed. A given statistical test shows up a difference if there
is a difference between the size and power of the test, which are just the probabilities
of ‘rejecting an output sequence as looking non-random’ when it is really random and
when it is only pseudo-random. Again, this has to be formulated in an asymptotic sense.
At the same time, ‘practically feasible’ is formulated in a probabilistic and asymptotic
sense: the algorithm must run on average in polynomial time. We will show that the
QR-generator has these properties, provided it is true (as most people believe) that
factoring large integers is (on average, asymptotically) infeasible.

Factoring integers enters here because of the way we choose m: in fact we let
m = pq where p and q are randomly chosen primes. A statistical test which shows up
the nonrandomness of this random number generator could be rebuilt into an algorithm,
which doesn’t take an essentially longer time to run, for factoring m. Since we believe
no polynomial time algorithms exist for factorising m, there cannot be a polynomial
time statistical test which the QR-generator fails. Note that if the size and power of a
given test are different, one can independently repeat the test a number of times and
build a new test whose power and size lie even further apart. In fact, if the power and
size differ by at least one divided by a polynomial, then at most a polynomial number
of replications of the test suffice to bring the size close to zero and the power close
to one. Thus: ‘failing a feasible statistical test’ in the weak sense of power being just
slightly bigger than size means that there exists a more conclusive feasible test which
the generator also fails.

As we mentioned, if the seed of the QR-generator is sampled appropriately, the
generator can be proven to be ‘cryptographically secure’ (hence statistically reliable)
under a reasonable assumption (born out by all practical experience and not contra-
dicted by any theory) about the infeasibility of factoring products of large primes. The
linear congruential generator, as it is usually used, can be shown not to be secure: one
can essentially recover the seed from the sequence with not too much work, and hence
come up with statistical tests which overwhelmingly reject its randomness. However it
is quite plausible that if not just x0 but also (some aspects of) a, b and m are chosen at
random in an appropriate way, and if not the whole xn but just, say, yn is output on
each iteration, the generator is secure. This is an interesting open question. My feeling
would be that good behaviour of a given generator in (varied and extensive) practice
means that it can probably be implemented in a cryptographically secure way.

Before embarking on the theory we should pay some more attention to its relevance.
In practice, does it make sense to suppose the seed of a random number generator is
chosen at random? What has ‘passing all feasible statistical tests’ (i.e., the power and
the size of any feasible test are essentially equal) got to do with how a generator is
actually used in practice?

As an example, let us consider the statistical simulation experiments carried out in
Nielsen, Gill, Andersen and Sørensen (1992) which aimed to show that a kind of gen-
eralised likelihood ratio test (in a certain semiparametric model from survival analysis
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estimated by non-parametric maximum likelihood) has the same asymptotic properties
as in the parametric case. During the simulations the nominal P -value of a log likeli-
hood ratio test, assuming an asymptotic chi-square distribution to be applicable under
the null-hypothesis, was calculated for a large number of large samples from the model,
under the null-hypothesis. If the conjectured asymptotic theory is true and if the cho-
sen sample size is large enough to make it a reasonable approximation, these P -values
should be approximately a sample from a uniform distribution on (0, 1). Under the al-
ternative their distribution should shift to smaller values. The results of the simulations
were summarized in a number of QQ-plots of uniform quantiles set out against ordered,
observed P -values; see Figure 1 for a typical case.

Figure 1. QQ-plot of uniform quantiles versus simulated nominal P -values, under the
null-hypothesis.

There are a 1000 points in the graph and each point represents a test-statistic based
on a sample of size 1000 from a bivariate distribution. Thus, supposing real numbers
were represented by strings of 30 bits, about 60 million simulated fair coin tosses are
needed to draw the graph. In fact the simulation was the completely deterministic result
of repeatedly calling a random number generator, starting with an initial random seed
represented as a string of about 100 bits. The random seed is the result left at the end
of the previous simulation experiment; alternatively one may let the system ‘reset’ the
seed in some mysterious way (using the system clock, perhaps) or the user can reset it:
perhaps with real fair coin tosses but more likely using a coding of his or her birthday
or bank account number or just with the first ‘random’ string of numbers which came
to mind. Whichever was the case, I am completely happy to consider the initial random
seed, for this simulation experiment, as truly random and perhaps even uniformly dis-
tributed on its range. Obviously if I carry out a number of simulation experiments at the
same workstation using subsequent segments of the same cycle of pseudo-random num-
bers, different experiments are not independent of one another. However this doesn’t
change the interpretation of what is going on in one given experiment.

Also in a bootstrap experiment, a simulated annealing calculation, and other sta-
tistical applications, a hundred or so ‘more or less’ truly random, fair coin tosses, are
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used to generate several million up to several billion fair coin tosses.
Obviously the distribution of the output sequence does not remotely look like what

it is supposed to simulate. However, we are not interested in the whole joint distribution
of the output sequence but just in the distribution of a few numerical statistics, or even
just of one or two zero-one valued statistics. For instance, the conclusion drawn from
Figure 1 is ‘this looks like a uniform sample’. One could summarize this impression
by calculating some measure of distance of the observed curve from the diagonal, or
one could even carry out a formal Kolmogorov-Smirnov test at the 5% level (with as
conclusion ‘O.K.’). The result of a bootstrap experiment is the measurement of one or
two empirical quantiles, to be used in the construction of a confidence interval. The only
important thing about these observed quantiles (based on several thousand replicates
of a statistic computed on samples of one hundred or a thousand observations) is that
they lie with large probability, under pseudo-randomness, in the same small interval
(about ‘the true bootstrap quantile’) as under true randomness.

Conclusion: even if we produce millions of random numbers in a statistical simula-
tion experiment, we are really only interested in the outcome of a few zero-one variables
computed from all of them. In fact, our use of the simulation is based on a reliance
that these variables have essentially the same distribution under pseudo-randomness as
under true randomness: in other words, they should be no use as a test of randomness.
If the distributions were different and known in advance, we could even use (preferably,
several replicates of) our simulation experiment as a test of our generator. It would
be the most sensible test to use since it tests exactly the aspect of the generator which
is important for us! However, the probabilities in question are not known in advance
and cannot be easily calculated, which is after all exactly the reason we were doing a
simulation experiment in the first place.

Note also that even if our simulation experiment is large, we still get it finished in
a reasonable length of time and if necessary could repeat it a few times. This means
that the statistical test of randomness which our use of the experiment represents, is a
feasible test. Consequently: a random number generator which passes all feasible tests
is a random number generator which we can safely use for all practical purposes.

I would like to go into one other digression before embarking on the theory as
promised. This concerns some connections between random number generators, round-
ing errors, and the randomness of, e.g., a classical fair coin toss.

The iterations of the linear congruential generator xn = axn−1 +b modm are quite
easy to analyse. First of all, one can iterate a number of times without reducing modulo
m and then only take the residue modulo m afterwards. This leads to the fact:

xn =

(
anx0 +

an − 1

a− 1
b

)
modm

Also, dividing the xn and b by m, one can take the residue of real numbers modulo 1;
in other words, the fractional part, denoted {·}. We find

yn = { an(y0 +
b/m

a− 1
) − b/m

a− 1
}.
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This means that the pseudo-uniform random numbers produced by the linear congruen-
tial generator are nothing else than the rounding errors in a table of the mathematical
function n 7→ exp(αn + β) + γ, when the table values are computed to the nearest
integer; take α = log a, β = log((b/m)/(a− 1)), γ = −(b/m)/(a− 1).

It is part of folk-lore of numerical mathematics and computer science that ‘rounding
errors are uniformly distributed’ and much practical experience and some theory exists
to support this observation. Less well established is that rounding errors in successive
entries in a table of a mathematical function are approximately independent; at least, if
the table entries are sufficiently far apart. This fact (which can be empirically checked)
has been put to good use in the mathematical-historical study of medieval arabic astro-
nomical tables by van Dalen (1993). Several astonomical tables known to historians of
science are tabled values of known functions but with unknown parameters (some pa-
rameters have varied over the centuries, others depend on geographical location). The
use of statistical techniques to determine the parameter values by non-linear regression
is controversial since, apart from gross errors which are usually easy to identify, the
tables have been calculated following a precise algorithm which yields exact results to
the required number of (hexadecimal) digits. Thus the only error is the final rounding
error; it is completely deterministic, and to consider it random or even independent,
uniform, is hard for some historians to stomach.

The fair coin toss can also be considered the result of a rounding procedure. Suppose
a (horizontally) spinning coin is thrown up vertically and falls back to a level surface
on which it is caught and made to lie horizontally without any bouncing. The side
uppermost can be computed as a function of the initial vertical speed v and rotation
speed ω. In fact, we can represent the total angle through which the coin has rotated
at the moment it is stopped in terms of these two parameters. We round the angle to
a multiple of 2π and then look if it lies between zero and π (heads) or π and 2π (tails).
The randomness of the outcome (heads or tails) is the result of the randomness, or if
you like, variability, of the initial parameters v and (appropriately enough) ω. Since
heads or tails is responsive to very small variations in these parameters (at least, when
they are large enough to begin with), and by some symmetry properties, a smooth
distribution of v, ω over a small region will make heads and tails about equally likely;
see Engel (1992).

The point about this digression is that an argument about how random the seed
is of a random number generator is very, very similar to the argument how random is
a coin toss; in fact, we are always forced to an infinite regress in which small amounts
of probability are needed to explain more; however, it is often the case that the type of
randomness which we get out of the system is not critically dependent of the type of
randomness we put in.

Now back to cryptography. We start with a specific example. The QR-generator,
proposed by Blum and Micali (1984) and using on ideas of Rabin (1979), is specified as
follows. Given a number k generate at random a prime number p and a prime number
q of length at most ⌊k/2⌋ bits; p and q should furthermore be unequal to one another,
and both should be congruent to 3 modulo 4. Subject to these restrictions p and q
may be thought of as being uniformly distributed over the set of all possible pairs (in
practice they will be chosen with a slightly different distribution as we will explain later;
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that does not change the subsequent theory in any essential way). Define m = pq (a
number of at most k bits) and choose x0 (also at most k bits) uniformly at random
from ZZ∗

m = {x ∈ ZZm : neither p nor q divides x}. One may also describe ZZ∗
m as the set

of elements of ZZm with a multiplicative inverse (modulo m); it forms a multiplicative
group. Now define recursively xn = x2

n−1 modm, yn = xn mod 2, n = 1, 2, . . . , l where
l = l(k) is at most polynomial in k. We later show how p, q and x0 can be determined
(easily: in polynomial time) from 2k fair coin tosses.

Define also
QRm = {x2 modm : x ∈ ZZ∗

m}.
This is called the set of quadratic residues, modulo m. From fairly elementary number
theory (the theory of the Jacobi and the Legendre symbols; the latter, as group homo-
morphisms from ZZ∗

m to the multiplicative group {−1, 0, 1}, have something to say about
whether a number is a square or not) it follows that exactly a quarter of the elements of
ZZ∗

m are squares; i.e.; members of QRm. Moreover, each member of QRm is the square
(modulo m) of exactly four different members of ZZ∗

m, having the form ±x,±y. Just one
of these square roots is itself also a square. Therefore, the function x 7→ x2 modm is a
permutation on QRm.

The reader is invited to calculate the table of squares of elements of ZZ∗
m in the case

p = 3, q = 7, and further to investigate the sequences yn produced by the generator.
Neglecting the factor 2 in the total length of our input string (m, x0) we consider

the QR-generator as a mapping from binary strings of length k to binary strings of
length l; or rather, for a given (polynomial) dependence l = l(k) as a sequence of
such mappings, one for each value of k. As explained above, by the QR-generator the
2k possible input strings are mapped into the much larger set of 2l possible output
strings. We put the uniform probability distribution on the input strings and consider
the statistical problem of distinguishing the resulting probability distribution on output
strings from the uniform distribution on the large set of all binary strings of length l.

Two notions are central to showing that the QR-generator (and many other gen-
erators) is reliable: the notion of a one-way function, and the notion of a hard-core
predicate. A one-way function is a function which is easy to compute, while its in-
verse is difficult (we restrict attention here to functions which are one-to-one, with the
same domain and range, hence are permutations). ‘Easy’ and ‘difficult’ mean here: on
average, in polynomial time, and not in polynomial time, respectively. The notion is
therefore an asymptotic notion and we are really applying it to a sequence of functions
fk, typically from a given subset of the set of binary strings of length k to another.
In our description of the theory we will, for simplicity, usually suppose the function is
defined on {0, 1}k, but our examples will involve slightly more complicated domains.

An example: consider the function ‘multiplication’ on the set of pairs of different,
ordered primes, each represented by binary integers of at most k bits. This function
is easy to compute: one can easily exhibit an algorithm which runs in an most O(k2)
time steps, where in each time step one basic operation on just two bits is performed.
However it is believed that no algorithm exists which computes the inverse of this
function, ‘factorization’, on average in an amount of time polynomial in k. This belief is
backed up by a huge amount of practical experience and much theoretical work too. A
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proof would in fact establish the famous conjecture ‘P ⊂ NP ’ (strict inclusion) which
says, in words, that there exist problems which, though a supposed answer to them can
be checked to be correct in a polynomial number of steps, no algorithm exists which
solves the problem (without knowing the answer in advance) in a polynomial number
of steps. In fact the existence of any one-way function at all would prove the ‘P ⊂ NP ’
conjecture. Considering the huge amount of work which has been put into this attempt,
without success, it is not likely that the existence of one-way functions is going to be
proved for quite a while.

At present the best known factorisation algorithm takes about a year on a very
fast computer to factor a 100 digit product of two large, unknown primes. The same
algorithm would take about a million years to factor a 200 digit number. This illustrates
what it means for an algorithm to be non-polynomial time: there is in practice a rather
strict limit to the size of problem which can be solved; and increasing the speed of
computers has very little effect on the limit. On the other hand, and rather important
for the feasibility of the QR-generator which requires one to randomly sample prime
numbers, the related problem of just deciding whether a given number is prime or
not, can be solved in polynomial time (using in fact a probabilistic algorithm which
therefore is not guaranteed to give the right answer, but can give the right answer with
a probability as close to 1 as one likes!). To decide whether or not a 100 digit number
is prime takes about half a minute.

We will show in a moment that the function ‘square’ from QRm to QRm is also a
one-way function, by demonstrating the equivalence of computing its inverse with the
problem ‘factoring’ (assumed to be one-way) just described. Really we should index the
set QRm not by m but by the chosen length k, since m is not supposed to be fixed or
known in advance.

The other central notion is that of a hard-core predicate. Though the inverse of
a function f may be hard to predict, it is conceivable that a number of properties of
the inverse are in fact easy to determine. For instance, it is easy to find out if a large
integer is prime or not, but difficult to supply a list of its prime factors. A hard-core
predicate is a property of the inverse which is essentially as difficult to determine as the
inverse itself. Let such a property be described by a function B from the range of f to
the set {0, 1}. Then f one-way means x 7→ f(x) is easy, but y 7→ f−1(y) is difficult to
compute; B hard-core for f means that x 7→ B(f(x)) is easy to compute (if you knew
the inverse x of y = f(x), you could calculate the property easily), but y 7→ B(y) is not
easy.

To be a little more precise, a one-to-one function f , say defined on {0, 1}k for each
k, is one-way if for all polynomial time functions M and all polynomials p(·),

Pk

(
f(M(f(x))) = f(x)

)
<

1

p(k)

for all sufficiently large k, where the probability distribution Pk is (typically) the uniform
distribution of x on {0, 1}k. Also, B is hard-core for f if, on the one hand, B(f(·)) can
be computed in polynomial time, but on the other, for all polynomial time M and all



116

polynomials p(·), ∣∣∣Pk

(
M(x) = B(x)

)
− 1

2

∣∣∣ <
1

p(k)

for all sufficiently large k, where again x is uniformly distributed.
Note the probability of a half here: the function M guesses the value of B correctly

just half of the time. This implies that B also takes the values 0 and 1 with equal
probabilities, otherwise by always picking a single value one could guess right with
bigger probability than a half.

As example of a hard-core predicate for the function ‘square’ on QRm, we men-
tion the so-called ‘last-bit’ or ‘parity’ function. This can be shown to be hard-core by
showing that an algorithm which computes the last bit of the square root (in QRm) of
a number in QRm (or in fact just guesses the last bit with succes probability a little
better than a half), can be converted into an algorithm, not needing much more time
to run, for determining the square root in its entirety. Note that the last-bit function
just determines whether the square root is even or odd, or its value modulo 2. In other
words, finding out if the square root of a number in QRm is even or odd is just as
difficult as finding the square root itself.

We next set up the definitions needed to discuss random number generators. A
generator f is actually a polynomial time sequence of functions fk mapping, say, {0, 1}k

to {0, 1}l(k) for some polynomial function l(·). The domain is called the seed space and
given the uniform probability distribution. Let Pn denote the uniform distribution on
{0, 1}n. A feasible statistical test T of a generator f is a sequence of polynomial time
functions Tl(k) from {0, 1}l(k) to {0, 1}, coding for ‘accept’, and ‘reject’, where the test
Tl(k) is a test of the null hypothesis that the output sequence y = f(x) is distributed

as Pl against the alternative that it is distributed as Pk ◦ f−1
k . We say that f passes

the test T if, for any polynomial in k, the difference between the power and size of the
test is eventually smaller than one divided by that polynomial. A generator is called
pseudo-random if it passes all feasible tests.

An apparently less stringent criterion of a generator is unpredictability. This means
that for each position from 1 up to l − 1 in the output sequence, no feasible function
exists which predicts, with better succes probability than a half, the next output bit of
the sequence, given the first bits up to this position. If a generator is predictable then
for some position in the output sequence one can, with some success, feasibly predict
the next bit from the preceding ones. A rather nice theorem of Yao (1982) states that
the property of being unpredictable is actually equivalent to being pseudo-random. In
other words: passing all feasible next-bit tests implies passing all feasible tests. Since
pseudo-randomness doesn’t depend on whether the output bits are taken in their usual
order or in reverse order, we have the nice corollary: forwards predictability is equivalent
to backwards predictability.

Here’s a sketch of the proof of the theorem. Predictable implies not pseudo-random
is easy, since we can obviously construct a test of a generator from a succesful prediction
of one of its output bits. For the converse, suppose the generator is not pseudo-random.
This means there exists a feasible test whose size and power are ‘significantly’ different
from one another. Denote the output sequence of the generator by y = (y1, . . . , yl) and
let y∗ = (y∗1 , . . . , y

∗
l ) denote a true random sequence. From these two consider all the
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‘cross-over’ combined sequences:

y(n) = (y1, . . . , yn−1, y
∗
n, . . . , y

∗
l ), , n = 1, . . . , l.

Apply the statistical test to both of y(n) and y(n+1). Since there is an appreciable
difference between the probabilities of rejecting y∗ and rejecting y, there has to be
somewhere, at least, some difference between the probabilities of rejecting y(n) and
y(n+1), since the first element of the first of these pairs is y∗ and the second element of
the last of the pairs is y. Here we use the fact that l(k) is at most polynomial in k: a
probability which is larger than one divided by some polynomial, also has this property
when divided by l(k).

Now if we can distinguish between y(n) and y(n+1) for some n, it seems plausible
that one can predict, with some success, yn from (y1, . . . , yn−1), since the only dif-
ference between y(n) and y(n+1) is whether the nth bit contains the deterministically
formed yn or the fair coin toss y∗n. Indeed, one can show that a ‘randomized’ pre-
diction algorithm can be built on comparing the results of the statistical test applied
to the two sequences: (y1, . . . , yn−1, 0, y

∗
n+1, . . . , y

∗
l ) and (y1, . . . , yn−1, 1, y

∗
n+1, . . . , y

∗
l ).

The algorithm is a randomised algorithm because it has to supply the fair coin tosses
(y∗n+1, . . . , y

∗
l ).

To conclude the general theory, we show that given any one-way permutation, say
f : {0, 1}k → {0, 1}k, with a hard-core predicate B, we can construct a pseudo-random
generator by iterating f , and outputting successive values of B(f) (both of which are
easy to do). This now famous construction is due to Blum and Micali (1984). To
see this, let x be chosen at random from {0, 1}k and let the generator output y =
g(x) = (B(f(x)), B(f(f(x))), . . . , B(f l(x))). We show that g is pseudo-random by
showing that it is not backwards predictable. The reason for this is that, if it were
backwards predictable, we could feasibly guess, with some degree of success, the value
of say B(fn(x)) given the values of B(fn+1(x)), . . . , B(f l(x)). Knowing this latter set of
values is less than knowing just fn(x), from which they may all feasibly be computed. So
given fn(x) we can apparently guess B(fn(x)). But this contradicts B being hard-core
(here we use the fact that if f is a permutation, fn(x) is also uniformly distributed).

The mention of {0, 1}k as domain and range of the one-way permutation f was
not in any way essential here. For the QR-generator, we take as range the set of pairs
(x,m) where x ∈ QRm and m is the product of two different primes, congruent to
3 modulo 4, and of length ⌊k/2⌋ bits; and we let f(x,m) = (x2 modm,m). We take
B(x,m) =

√
x mod2 where the square root is taken in QRm. Incorporating m into both

domain and range of the one-way function sets things up so that successive iterations
can be done knowing m, as is needed; also it makes it clear that the pair (x,m) together
form the random seed of the generator. In practice, one can sample from the seed space
as follows: choose independently two random integers of length ⌊k/2⌋ bits and equal to
3 modulo 4 using fair coin tosses in the obvious way. Test each for primality and if it
fails, increment by 4 and repeat (also demand that the second prime is different from
the first). After not too many tests (by the prime-number theorem, which says that
among integers of ⌊k/2⌋ bits, primes lie at typical distance O(k) apart) you will have
found two primes p and q. Choose independently a random integer of length k bits by
fair coin tosses; check it is not divisible by p or q (so a member of ZZ∗

m; if not, repeat),
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and square it modulo m to obtain your initial x, element of QRm.
Probabilists will be immediately aware that this procedure does not sample uni-

formly from the seed space. The chance a given prime p or q is selected is proportional
to the distance between it and the previous prime. It seems not possible to achieve a
uniform distribution on primes with a polynomial time sampling algorithm. This is not
a crucial point at all, since it is just as plausible that factoring is, on average, infeasible
when pairs of primes are sampled as described, as when they are sampled uniformly. In
the proof above it was needed that the distribution of f(x) was the same as that of x;
but that is also true in our case, with x replaced by (x,m).

A more delicate point is that the sampling procedure requires more input random-
ness than just the fair coin tosses to start the search for p and q and to choose x, in
that the primality-testing algorithm has to be probabilistic if it is to be a polynomial
time algorithm. So one should also ‘count the coin tosses’ needed here in order to prop-
erly judge the effectiveness of the QR-algorithm as a random generator; typically O(k)
suffice, so this is not a problem: even when these coin tosses are taken into account, we
have output a much longer sequence of simulated coin tosses.

It is amusing that in a theory which depends on the notion of a probabilistic poly-
nomial time algorithm (in fact, a probabilistic Turing machine) to characterise feasible
and infeasible problems, one should go to so much trouble to describe how randomness
can be generated, or rather expanded, in a deterministic way. A probabilistic Turing
machine is supposed to be able to generate its own fair coin tosses, so looking from
inside the theory, random number generators are not needed; they already exist!

We have now completed our general discussion of the theory. To apply the theory
to the QR-generator, just two facts have to be verified: that squaring on QRm is one-
way, and that the parity bit of the inverse is hard-core; in other words, taking square
roots is hard and just deciding if the square root is even or odd is just as hard.

We prove the one-way property; the hard-core property has a rather more elaborate
(and very ingenious) proof requiring more, related, facts from number theory; see Alexi,
Chor, Goldreich and Schnorr (1988) for a proof, building on earlier work of Ben-Or,
Chor and Shamir (1983). Actually the highest bit is also hard-core, or even some log k
bits taken together. The proof of the hard-core property goes via showing that an
algorithm for determining the parity of the square root can be built into an algorithm
to do factoring.

For the one-wayness of squaring, we suppose it is possible to compute square roots
in QRm, for given m, and show that this leads to a not much longer algorithm for
factoring m. Our algorithm will actually be a probabilistic algorithm which leads to
the right answer in polynomial time with overwhelmingly large probability. Start by
picking a uniform random point in ZZ∗

m. (There are (p − 1)(q − 1) elements of ZZ∗
m, so

this is most of ZZm). Square it, and we now have an element of QRm. Take the square
root in QRm: the result is ±x or ±y for some y 6= ±x. Moreover the probability is
a half that the answer is not ±x. If however we find ±x, simply repeat with a new
random choice of x.

After a not too large number of attempts we have found x and y with x 6=
±y modm, x2 = y2 modm. The latter equation, rewritten as (x−y)(x+y) = 0 modm,
tells us that x ± y is divisible by p or q. Now we can use the Euclidean algorithm to
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determine the greatest common divisor of m and, say, x − y (take the remainder of
the larger number on division by the smaller; discard the larger and repeat with the
remainder and the smaller number). This algorithm takes O(k2) steps so is feasible.
The greatest common divisor is p or q and division into m provides the other prime.

A small amount of practical experience with the QR-generator (Brands, 1991),
suggests that it is just as good, in the traditional sense of passing traditional statistical
tests of randomness, as a linear congruential generator of similar size and used in the
same way (extraction of just one bit on each iteration). We also refer to that work
for full details of the theory sketched here, including an introduction to the theory of
‘polynomial time computation’ based on Turing machines and Boolean circuits, and a
survey of the number theoretic results needed to understand the cryptographic theory.
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Appendix. Product-integrals in TEX.

For the reader interested in writing up his own research on product-integration, here
are TEX macros and a postscript file (the latter to be saved as ‘pi.ps’) for printing a
nice product-integral symbol. The files are also available by email from the author.
Exercise: make the ultimate product-integral with METAFONT.
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