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CHAPTER 1

PRELIMINARIES

1.1. Introduction

Censoring occurs both in industrial life-testing (i.e. investigation
of the distribution of the lifetime of manufactured components or complete
systems) and in medical trials and biological experiments (e.g. on carcin-
ogens). So terms synonymous to a "censored observation" are a "withdrawal",
a "loss", or a "death due to a competing risk"; while an "uncensored obser-
vation" might be a "failure", a "relapse", or a "death from the cause under
study". More detailed examples are given in Section 3.1.

Formally, in all these situations one is interested in the distribution
or distributions of n independent positive random variables Xl,...,X . How-
ever one is only in a position to observe (X1,6 ),...,(X ,8 ) where the 6
are indicator random variables (i.e. take the values zero or one only) such
that dj takes the value 1 if observation j is uncensored, in which case Xj
takes the same value as Xj' On the other hand, if Gj takes the value 0, ob-
iervation Jj is censored and we only know that Xj takes a value larger than
Xj.

In all the situations outlined above, time and random phenomena occur-
ring in time play an essential role. It is our thesis that the same is true
of the mathematics of the situation: in other words, it pays to study the
statistical problems of interest in terms of the theory of stochastic
processes.

This possibility of a new and fruitful application of probability
theory to the statistics of censored data was exploited by 0.0. Aalen in
his thesis, AALEN (1976), and later articles, especially AALEN (1977) and
(1978). In particular he made use of the theory of stochastic integrals as
developed by the Strasbourg school of probabilists (see MEYER (1976) or
JACOD (1979) for recent and complete accounts of the theory) together with

the theory of counting processes developed especially in Berkeley by



various authors such as BREMAUD (1975), DOLIVO (1974), JACOD (1975) and BOEL,
VARAIYA & WONG (1975a, 1975b). A general survey of the theory of counting
processes is given by BREMAUD & JACOD (1977).

We are especially interested in a number of one- and two-sample statis-—
tical methods which lend themselves very nicely to a treatment in this frame-
work. In the first case Xl(""xn are identically distributed with an unknown
distribution function F which one wants to estimate; while in the second
case the Xj's fall into two groups, those in group i being identically dis—
tributed with distribution function Fi (i =1,2), and one wants to test the
null hypothesis F1 = F2. The methods considered are approximate and non-
parametric: more explicitly, they rely on large-sample results, and do not
assume that F, or F1 and F2, belong to some parametric family of distribu-
tions. In general no truly non-parametric (i.e. distribution-free) methods
are possible; at least, not useful ones.

In the first place we consider the product limit estimator of KAPLAN &
MEIER (1958), which plays a role for censored data similar to that of the
empirical distribution function for uncensored data, and the two-sample
test statistics of GEHAN (1965), EFRON (1967) and COX (1972). These test
statistics are generalizations of ones originally developed for very special
types of censored data; the first two being Wilcoxon-type tests while the
last one is of Savage-type. They are the most widely used and applicable
non-parametric two-sample tests for use with censored data.

Our plan of attack is as follows. The present chapter closes with a
summary of notation and conventions which will be used later without comment.
In Chapter 2 we build up an arsenal of results from the theory of stochas-
tic processes in particular concerning stochastic integrals, martingales,
counting processes and weak convergence of processes, and the interrelations
between these subjects. The returns for using such heavy artillery will be
unification and generality. We do not need the full force of many of the
original results and so have striven here for simplicity.

Chapter 3 begins with examples of how censored data can arise (we
restrict attention till Chapter 6 to so-called right censorship) and then
extracts a few key properties of all but one of these examples. A model with
these properties underlies the rest of Chapter 3 and all of Chapters 4 and
5. In Section 3.2 we introduce the product limit estimator and in Section
3.3 the three test statistics in terms of the model for censored observa-
tions which has been established. By way of illustration of the theory of

stochastic integrals, we derive some of the small sample properties of the

-



estimator and the test statistics, the latter being considered as members
of a general class of test statistics K. Of particular interest are Theorem
3.2.1 and Proposition 3.2.1, which give linear bounds on the product limit
estimator analogous to well known results on the empirical distribution
function (see SHORACK & WELLNER (1978) or VAN ZUIJLEN (1978)).

In Chapter 4 we proceed to derive asymptotic results on these statis-
tics. Notations and definitions for this and the following chapter are
summarized on pages 53, 54, 55, 58 and 59. As well as giving general re-
sults on consistency (Section 4.1) against various types of alternatives and
asymptotic normality (Sections 4.2 and 4.3) we specialize to what we call
"the general random censorship model" (Example 4.1.1) in which for each 3,

~

xj = min(xj,Uj), where Ul""'Un are "censoring variables", independent of
one another and of the Xj's, and with arbitrary distributions. We also pay
special attention to the case when U1 = ... = Un = T for some "stopping
rule" T depending on the observations. The results are derived with a uni-
fied approach and at the same time generalize those to be found in the lit-
erature. In particular we do not require any of the distribution functions
concerned to be continuous, and extend test statistics originally proposed
for continuously distributed data for use in the situations where the under-
lying distribution functions are (partially) discrete.

In Chapter 5 we loock at efficiencies when testing against specific
alternatives. We develop some new test statistics, also members of K, which
are specially suited for testing against particular parametric alternatives.
Also we derive test statistics which are consistent when testing against the
mere inequality of two distributions.

Finally in Chapter 6 we sketch a number of extensions to the preceding
theory. In particular we mention more general forms of censorship than the
"right censorship" considered so far, and we pay some attention to the

example in Chapter 3 which was not covered by our general model.

1.2. Notation

The following notations will be used without comment in the sequel.
Let X be a real-valued function on the set of nonnegative real numbers
]R+ = [0,%). If X has finite left hand limits everywhere (we say "X has
left hand limits"), then X_ is the function on I§+ defined by X_(t) = x(t-),

t > 0, and X _(0) = 0. We define X+ similarly when X has finite right hand



limits everywhere, and define X () = %ig X(t) if this exists. If X is
right continuous with left hand limits then AX is the function X - X . If
{Xj: j € J} is some indexed family<>ffunction§; we write X, for (Xj)_, etc.
Suppose Y is a real-valued function on IR which is right continuous
with left hand limits and is of bounded variation on each bounded subinter-
val of ]i+ (we also say "Y is of locally bounded variation"). Moreover
suppose that X is a Lebesgue-measurable real-valued function on IfF such
that fss[O'tJIX(s)lldY(s){ is finite for each t € W' (i.e. "X is locallyl
integrable with respect to Y"). Here the integral is a Lebesgue-Stieltjes
integral with respect to the total variation of Y (which assigns mass [Y(o)]

to the point zero in line with the convention Y(0-) = 0). Then for each t

we define

t

(1.2.1) J Xay = J ' X(s)dy(s),
0 SEEOIt]

and we denote by f XdY the function taking the value (1.2.1) in the point t.

Note that (f Xdy) (0) = X(0)Y(0). We denote by Yc the continuous part of Y;

i.e.

(1.2.2) Y () =Y(t) - ] A¥(s),
(o}
s<t

where the sum is an absolutely convergent sum of at most countably many

nonzero terms.

All the above notations will be extended to stochastic processes in
Section 2.1.

(Q,F,P) will denote a complete probability space and w a generic member
of Q. We write o{-} for the sub-c-algebra of F generated by a family of
random variables and use the symbol V to denote the o-algebra generated by
a union of cg-algebras. Convergence in probability and in distribution are
denoted by +P and +v gespectively. N(u,cz) is the normal distribution with
mean Y and variance o .

The following are some miscellaneous points of notation. X is the
indicator variable for the set A. For typographical convenience our nota-
tion for an indexed set (i.e. specifying a function) is the same as that
for a set itself: we write {X(t): t € [0,%)} for the indexed set
{X(t)}te[O,w)' When dealing with a function of two variables, (t,w) = X(t,w),
we may write X(-,w) for the function of t obtained when w is fixed. Symbols

. . . . -+ . =
s,t,u,v,T are always "time variables" either in R or in Rt = [0,~],



while i,j,m,n,r are "index variables" in IN. The symbols A and V are used
to denote minimum and maximum respectively; and # denotes the number of
©lements in a set. For a real number x, the integral part of x is denoted by

Cx]. The symbol « means "is proportional to". Throughout, we hold to the
Convention 0/0 = 0.



CHAPTER 2

SOME RESULTS FROM THE THEORY OF
STOCHASTIC PROCESSES

2.1. Notation and basic concepts

References for this and the following section are MEYER (1976) or
JACOD (1979).

Let (2,F,P) be a fixed complete probability space. A real stochastic
process X = {X(t): t € [0,%)} is a time-indexed family of real-valued
random variables. X can therefore also be considered as a function on
L0,2) x @ and we accordingly write X(t,w) for the realized value of the
random variable X(t) in the point w € Q. The sample paths or simply paths
of X are the real-valued functions X(*,w) on [0,»). 1f X(t) is integrable
for each t, we write EX for the function t — E(X(t)). We call X itself
integrable if e 55y Elx(t)| is finite; and square integrable if X° is
integrable.

Two processes whose paths are almost surely identical are called
indistinguishable. When we say that a process for example is right contin-
uous, has left hand limits, or is of Ffinite variation, we mean (unless
explicitly stated otherwise) that almost all of the sample paths have this
property. If a process has left hand limits, we can define (up to indis-
tinguishability) a left continuous process X such that X_(+,w) = (X(=,w))_
for almost all w € Q. We similarly define processes X, and AX under the
appropriate conditions, at least up to indistinguishability.

In the same way we can define f Xdy and Yc if almost all the paths of
X and Y have the appropriate properties (see (1.2.1) and (1.2.2)). However
it is not generally true that this defines stochastic processes, for
Ise[o,t]x(s’.)dy(s") (denoted by fg Xdy) and Yc(t,-) are not necessarily
measurable functions on (,F). In the sequel we often apply the condition
that X and Y be measurable brocesses; i.e. as functions of (t,w) € [0,») xQ
they should be measurable with respect to the product o-algebra B ® F, where

B is the Borel o-algebra on [0,®). In particular, processes all of whose



paths are left continuous or all of whose paths are right continuous are
measurable. The process [|dv| is called the variation of Y.

Till now the ideas of "past" and "future" have been absent. To intro-
duce them, we suppose that we are given a family {Ft: t e [0,)} of sub-
o-algebras of the complete o-algebra F such that
(i) {Ft} is increasing: Fs c Ft for all s < t,

(ii) {Ft} is right continuous: Fs = tgs Ft for all s,

(iii) {Ft} is complete: FO contains all P-null sets of F.

Ft is to be interpreted as the collection of all events which can occur at
or before time t. So (i) expresses the fact that as time evolves, new events
may happen. Conditions (ii) and (iii) are technical ones; for us they are
completely harmless (see Appendix 2 for some results on how (ii) and (iii)
may be verified). We define the o-algebras Ft- = sgt Fs and F_ = te[&kw) Ft'

A collection (Q,F,P), {Ft: t € [0,»)} satisfying the above requirements
is called a stochastic basis. For the rest of this section we suppose one
to be given.

We can now define an adapted process X as one such that X(t) is Ft—
measurable for each t. A stopping time T is an i§+—valued random variable
such that {Tst} € Ft for each t. Interpreting T as the time some random
phenomenon occurs, T is a stopping time if at each time instant t one can
determine whether or not the phenomenon has yet occurred. The o-algebra ET'
which can be interpreted as the collection of all events which can take place

at or before time T, is defined by

FT ={ane F: an {7t} € Ft vVt € [0,®)}.

We next introduce three important classes of processes: martingales,
predictable processes, and counting processes. If an adapted process M is
right continuous with left hand limits, is such that M(t) is integrable for

each t, and is such that
EM(t) [Fs) = M(s)

for each s < t, then we call M a martingale. If M is a square integrable
martingale, then %ig M(t) = M(») exists almost surely, and adjoining Fw to
the stochastic basis, M is a square integrable martingale on the time set
Lo0,=].

A predictable process is one measurable with respect to the o-algebra
on [0,») x Q generated by the adapted processes, all of whose paths are

left continuous on (0,%). So in particular the latter processes and Borel functions



of them are predictable; and a deterministic process all of whose paths are
equal to a single Borel measurable function is predictable. If H and K are
predictable and f HAK exists, it too is predictable.

A multivariate counting process N = {Ni: i=1,...,r} is a finite
family of adapted processes Ni such that for almost all w € Q, the paths of
Nl""'Nr are nondecreasing, right continuous, integer-valued functions,
zero at time zero, and with jumps of size +1 only, no two processes jumping
at the same time.

Loosely speaking, a martingale is a process without any systematic
behaviour in the mean: if M is a martingale then for any s, the process
t > M(t) - M(s), t € [s,®), has zero mean given everything that has happened
up to time s. A predictable process is one whose value at time -t is fixed
given whatever has happened up to but not including time t. This is also
true if t is replaced with any stopping time. An r-variate counting process
records the occurrences of r types of random phenomena, which cannot occur
simultaneously.

A final general concept is that of a process having a certain property
locally. This is defined by requiring the existence of a so-called local-
izing sequence of stopping times {Tn: n € N} such that
(i) Tn + ® almost surely as n -+ =,

(ii) For each n, the stopped process t - X{Tn>0}x(tATn) has the required
property.

If X(0) = 0 almost surely, the stopped process above is indistinguish-
able from the process t - X(tATn), which is MEYER's (1976) definition of
stopped process; however our concept of localization is the same. Let us
illustrate this important notion by showing that a univariate counting
process N is locally bounded (a process is bounded if almost all its sample
paths are bounded in absolute value by the same finite value). For let
T, = inf{t: N(t) 2 n} where the infimum of an empty set is assigned the
value +». Since the events {Tnst} and {N(t)2n} differ at most by a null set
and N is adapted, Tn is a stopping time. Also, Tn + « almost surely. Final-
ly, almost all of the paths of X{Tn>O}N(.ATn) are bounded in absolute value
by n.

In future we shall generally identify a process with the equivalence
class of processes from which it is indistinguishable; this should be
particularly borne in mind with statements of equality or unigueness. It
does lead to some anomalies: strictly speaking, only part of the equivalence

class of a predictable or a measurable process has these properties.
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In the theory of stochastic processes and stochastic integrals,
martingales and predictable processes continuously play a complementary
role. One instance of this is the following important result on local
square integrable martingales. Let M1 and M2 be local square integrable
martingales. Then there exists a unique predictable process <M1,M2> whose
variation exists and is locally integrable such that M1M2 - <M1,M2> is a
local martingale, zero at time zero. If M1 = M2, <M1,M2> is in fact non-
decreasing. <M1,M2> is called the predictable covariation process of M

and M2. If M1 and M2 are in fact square integrable martingales, then

1

Mle - <M1,M2> is a martingale on the time interval [0,~]. Note that
<M1,M2> is right continuous with left hand limits, and that <+,+> is sym-

metric and bilinear.

2.2. Stochastic integrals

In Section 2.1 we saw that under reasonable conditions, the integral
of one process with respect to another can be defined in a sensible way
and will have all the properties one can reasonably ask of it, such as
being a stochastic process itself. The question now arises: what properties
of X and Y relative to a given stochastic basis (Q,F,P),{Ft: t e [0,°)}
carry over to the process f Xdy, defined by taking pathwise Lebesgue-Stiel-
tjes integrals of X with respect to Y over the interval [0,t] for each
t € [0,%)? We already saw that if X and Y are predictable and I Xdy
exists, then it is predictable too. It turns out on the other hand that if
X is predictable but Y is a martingale, then subject to some natural condi-
tions f XdY is a martingale.

Here we summarize some of the results on this theme, not in the most
general form (see MEYER (1976) or JACOD (1979)) but suitable for our pur-
poses.

Let M1 and M2 be local square integrable martingales with paths of
locally bounded variation, and let H1 and H2 be predictable and locally
bounded (in particular, H1 and H2 have these properties if they are left

continuous with right hand limits and are adapted). Then f HldM and

1
f szM2 exist and are local square integrable martingales, and their pre-

dictable covariation process satisfies

_r
<[ mjam, [ HyAM,> = ] H H A<M ,M,>.
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(In fact the requirement that Hi be locally bounded can be relaxed to re-
quiring that f HidMi exists and f H§d<Mi,Mi>be locally integrable; however
we will hardly ever need this.) If the localizing sequences of stopping
times associated with Ml’MZ'Hl and H2 are sequences of constants, then the
same holds for the localizing sequences associated with <M1,M >, f HldMl’
etc.; and if the words "local" and "locally" applied to Ml,M2,H1 and H2 can
be dropped altogether, the same applies to <M1,M2>, f HldMI' etc.

We shall make much use of the following corollary of these facts.
Let M1 and M2 be local square integrable martingales with paths of local—.
ly bounded variation, zero at time zero, and let H1 and H2 be locally bound-
ed predictable processes. Suppose the localizing sequences of stopping
times associated with Ml'MZ’ H1 and H2 can be taken to be sequences of con-
stants. Then the processes f HldM1 and f H2dM2 exist and the following

equalities between real-valued functions on [O,w) hold:
(2.2.1) £ Hidm) =0, i=1,2,
(2.2.2) E(f Hyam, IH2dM2> = E(f H H, A<M, M) .

If the words "local" and "locally" can be dropped altogether, and if
f HldM1 and f H2dM2 are also defined in the point «, then the same equali-
ties hold on [0,«].

In fact (2.2.1) also holds more generally. Suppose that M is a local
martingale (not necessarily locally square integrable) with paths of local-
ly bounded variation, and suppose H is a locally bounded predictable pro-
cess. Then f HAM exists and is a local martingale. Now a local martingale
is localized by any sequence of stopping times making its variation local-
ly integrable. So if for all t, E f; lHllaM| < ®, then [ HAM is a martin-
gale. If furthermore M(0) = 0 almost surely, then (2.2.1) holds (dropping

the index i).

2.3. Counting processes

In this section we show how certain local square integrable martingales
are associated with the multivariate counting processes defined in Section
2.1. Recall that these could be interpreted as processes counting the occur—
rences of a finite number of types of mutually exclusive phenomena. As in

Section 2.2 we considerably specialize the general results available; see
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BREMAUD & JACOD (1977) for a survey of these.

Let (Q,FIP),{Ft= t € [0,2)} be a fixed stochastic basis and
{Ni: i=1,...,r} be an r-variate counting process. By MEYER (1976) Theorem
I.9, there exist right continuous, nondecreasing, predictable processes Ai'

zero at time zero, such that
(2.3.1) Mi =N, - A, i=1,...,r

are local martingales. Ai is called the compensator of Ni (and also its
"dual predictable projection").

The following result shows that, for each i, Mi is in fact a local
square integrable martingale and gives explicit expressions for <Mi,Mj>.
It was proved under the condition that Al""’Ar are continuous by BOEL,
VARAIYA & WONG (1975a); this condition was later removed by ELLIOT (1976),
LIPTSER & SHIRYAYEV (1978) and GILL (1978). We give a short proof based on

an idea of J. VAN SCHUPPEN in Appendix 1.

THEOREM 2.3.1. In the situation specified above, each compensator Ai satis—

fies 0 £ AAi < 1. The Mi's are local square integrable martingales with

(2.3.2) <Mi,Mi> = J (1 - AAi)dAi,

(2.3.3) <Mi,Mj> - J AAidAj i# 73, i,j=1,...,r.
The localizing stopping times may everywhere be taken to be any nondecreas-
ing sequence of stopplngtlmes{T }, T *> ® a.s. as n > ©, such that

E 21 N (T ) < » for each n = 1,2,... (here Ni(m) = sgp N, (£)).

To make use of this result we need to know the processes A We shall

make use of the following theorem, adapted from a theorem of MURALI—RAO
(1969) :

THEOREM 2.3.2. Let N be a univariate counting process and let t € (0,)
satisfy E(N(t)) < =. Define

t =12, n=1,2,..., i=0,1,...,2°
and n

vy= LOEme L - e PP D0 m=12,.
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Then there exists a subsequence of integers {rn}, r =+ ® as n > «, and a

unique random variable U, such that for all bounded random variables X,
E(xu, ) -~ E(xu)
n
as n > ., The compensator A of N satisfies
A(t) = U
almost surely.

Note that if EN(t) = =, one can still apply this theorem to the bound-
ed counting process NA n for each n and take limits; and in the multi-
variate case, the theorem can be applied to each component in turn. Also it
often turns out that the sequence of random variables {Un] is almost sure-
ly convergent as n -+ », so U must be this limit. However the theorem only
supplies us with a random variable U = Ut almost surely equal to A(t). To
construct A, one should note that the facts: A is right continuous, and
A(t) = U_ almost surely for each t, determine A given {Ut: t € [0,%)} up to
indistinguishability.

Many other theorems can be applied to determine the compensators Ai
of a counting process {Ni: i=1,...,r}. For instance, define (Tn’In)’

n=1,2,... by

]

r
inf{t: 'Z N;(t) 2n}, n=1,2,...

(2.3.4) 'I‘n
i=1

and

(2.3.5) I =1i<T <o and AN,(T ) =1,
n n i'"n

otherwise In = 0. So Tn is the time of the n-th jump of {Nl""'Nr}’ and if
Tn < o, In is the index of the component which then jumps.

Suppose also that
(2.3.6) Ft = FO v U{Ni(s): i=1,...,r; s < t}.

(Theorem A.2.1 shows that {Ft} is automatically right continuous in this
case.) Then Proposition 3.1 of JACOD (1975) shows how the processes

Al,...,Ar can be constructed from the conditional distributions of Tn+1
and In+1 given FO’Tl’Il""'Tn’In for each n. Conversely, Al""’Ar in a

sense determine the joint distribution of Tl’Il'TZ'I2"" given FO as we
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shall see presently.

Another theorem by which A, can be determined is DOLIVO (1974) Theorem

i
2.5.1 which shows that in certain circumstances Ai(t) may be identified

with fg Ai(s}ds where

PN, (s+h) - N, (s) = 1| F)-

i

Ai(s) = lim
h+0

This result shows that the compensator of a counting process can be inter-
preted as the integrated or cumulative conditional rate at which it jumps;
it can often be used heuristically to suggest what Ai is. In the discrete
case where Ft = F[t] and N, only jumps at integer time instants, Theorem
2.3.2 can be applied to show that Ai too is constant between time instants,
and that AA,(t) = P(AN;(t) = 1|F ), t =1,2,... . Again A, can be inter-
preted as a cumulative conditional rate for Ni'

A final method for determining Ai is to make use of theorems on
uniqueness and existence of processes with a given "intensity process" Ai,
and then show that the so constructed processes Ni are indeed those one
had in mind. Such theorems are given in BOEL, VARAIYA & WONG (1975b), while
AALEN (1976) Section 5D illustrates this approach.

We now present two theorems showing that the compensators Ai determine
in a sense the probability distribution of the original counting process.

The first one is a simplified version of Theorem 5.1 of JACOD (1975) :

THEOREM 2.3.3. Let N = {Nl""'Nr} be an r-yariate counting process, define
(TpeI)e n=1,2,... by (2.3.4) and (2.3.5), and suppose that {Ft} is given
by (2.3.6). Suppose also that Z§=1 Ni(“) is almost surely finite. Let P' be
another probability measure on (Q,F) such that P and P' agree on FO and are
absolutely continuous with respect to one another on Fm. Suppose Ni has
compensator Ai under P and compensator Ai under P'. Then for each i, Ai and
Ai are almost surely absolutely continuous with respect to one another as

functions on [0,»), and on Fm we have

. ( il (1 —Z.AA}(S)))eXp(- LA! (“))
. d‘I‘In \ ST T, Pl Lt
(1 goom)) .
n:T <e I, ( i (1 —XiAAi(s)))exp(— ziAic(w{>

sd{Tl,Tz,...}

The final theorem of this section states in effect that if the compen-
-ator A of a univariate counting process N is such that for each t, A(t) is

Jetermined by the value of N(s), s < t, then the form of A actually determines
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the probability distribution of the jump times of N. (A multivariate version
of the theorem also holds, but we shall not need it.) A proof is given in

Appendix 3, in which results of JACOD (1975, 1979) are applied.

THEOREM 2.3.4. Let N be a univariate counting process with compensator A,
and define T = inf{t: N(t) 2z n}, n=0,1,... . Suppose that outside of a
null set of Q,

A(t) = A(Tn) + fn(t—Tn;Tl,...,Tn) for all t € (Tn'Tn+1]'

n=20,1,...,

+
where fn (n =0,1,...) is a real measurable function on (]R)n+1 such that

for 0 < t1 < ... < tn' fn(-;tl,...,tn) is nondecreasing, right continuous,
and zero at time zero. Then the joint probability distribution of T1,T
£

PURRE

is uniquely determined by fO’fl’ PYARE

The compensator A of N can be expressed in the form given in Theorem
2.3.4 if for all t

Ft = FO VolN(s): s <t}

and if FO is independent of TysTys-.. (which is trivially the case if FO
contains only P-null sets and their complements). For then by JACOD (1975)
Proposition 3.1 and Theorem A.2.1,

s an(u;tl,...,tn)

£ (S;t ,...,t) = j _ R ’
n 1 n 0 1 Fn(u 'tl""'tn)

where Fn is a regular version of the conditional distribution function of

Tn+1 - Tn given Tl""'Tn'

2.4. A martingale central limit theorem and related results

Suppose that for each n = 1,2,... a stochastic basis is given on which
r local square integrable martingales Z?, i=1,...,r, are defined. Then
for each n, Zn = {Zgz i=1,...,xr} can be considered as a random element of
(000,=)) " where D[0,») is the space of functions on [0,») which are right
continuous with finite left hand limits, endowed with the Skorohod topology

(see STONE (1963), LINDVALL (1973) or VERVAAT (1972)).
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Let A:, i=1,...,r, be nondecreasing continuous functions on [0,®),
zero at time zero. It is well known that a random element z” = {z:: i=1,...,r}
of (D[O,w)f:can be defined with the following properties: the Z:'s,
i=1,...,xr, are independent Gaussian processes with continuous sample paths,
zero at time zero, and have zero means, uncorrelated (hence independent)

-]
increments, and variance functions Ai' i=1,...,x, i.e.
] (=]
(2.4.1) var(Zi(t)) = Ai(t)-

In fact the Z:'s are local square integrable martingales with respect to
the natural stochastic basis (let F: = O{Z:(S): i=1,...,r, s <t} VN,
where N consists of all P-null sets and their complements). We can drop the
word "local" if Az(m) < « for each i. Also

@

@ co Aj_ l=j
(2.4.2) <Z2,.,Z2.> =
] 0 i# 3.
This well known fact has a converse. Suppose processes Z:, i=1,...,r,

are local square integrable martingales with continuous paths such that
(2.4.2) holds for given nondecreasing functions A:, zero at time zero. Then

)
the Zi's are r independent Gaussian processes with independent increments
and of course (2.4.1) holds; see e.g. MEYER (1971).

This result provides the key idea in the proof of a theorem of
REBOLLEDO (1979a), which states that if the jumps of the processes Zz,
i=1,...,r, become small in a certain sense as n + ®, and if
<Z2,Z§>(t) +P <Z:,Z;>(t) as n + « for all i, j and t, then Zn +D Zc° as
n >« in (D[0,»))¥. In other words, if in the limit 2" has the properties
which characterize the distribution of Zw, then z" converges in distribution
to Z .

To make the statement concerning the jumps of Z? more precise, let us
introduce the concept of an e-decomposition of r local square integrable
martingales Zl""'zr' For € > 0 let 2?,...,Ei, gi,...,gi be local square

integrable martingales such that for each i,
(2.4.3) 2, =325 + 2%,
i =i i

(2.4.4) sup lAgi(t)l < ¢ almost surely,
te[0,=)
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(2.4.5) Ei has paths of locally bounded variation, and for each i and j

P(3t ¢ [0,) such that AZ{(t) # O and Az§<t) #0) = 0.

Then we call {E?,...,Zi} the jump part of an e-decomposition of {zl,...,zr}.
Intuitively speaking, {ZT,...,Zi} removes completely all the jumps of
{Zl""'zr} for which any of fhe component jumps is greater in absolute
value than €. As an example, let N be a univariate counting process with
compensator A, let M = N-A, and let H be a locally bounded predictable
process. Define 2 = f HAM and 25 = f HX{IHIZE}dM' Then z° is the jump

part of an e-decomposition of the local square integrable martingale Z.

We now formulate our version of REBOLLEDO's (1979a) Theorem V.I.:

(=]
THEOREM 2.4.1. Let zn, n=1,2,... and Z be defined as above and suppose
that for each ¢ > 0 and each n = 1,2,... an e~decomposition of Zn exists
such that
(2.4.6)  <z°%,20%(t) »_ 0
i i P

as n > «» for each i and t. If also

- Al(e) 1=
(2.4.7) <zl,20 0 -
J 0 i#3

as n » », for all i, j and t, then

(2.4.8) z" D z>

as n -+ « in (D[O,w))r. Furthermore, 1f Z? has paths of locally bounded
variation for all i and n, then

*® s .

Ai(t) i=73j

(2.4.9) T az%(s) 2zl (s) -
s<t * J F Y i#73

as n » « for all i, j and t.

This theorem is also valid with LO,») replaced everywhere by [0,«],
noting that on [0,«] localizing stopping times Tn’ n=1,2,..., should also
©
satisfy P(Tn==w) + 1 as n + «», and that we now also require Ai(m) < o,
i=1,...,r.
In REBOLLEDO (1979a), the theorem is given for the case r = 1 but our
version can be obtained from this one by a straightforward application of

the Cramér-Wold device (see REBOLLEDO (1978) Theorem 3.5 for a similar

[ |
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extension). Also the original theorem requires (2.4.7) to hold for the
canonical e~decomposition, which we prefer not to introduce. However the
proof of REBOLLEDO (1979b) Lemma 5 part 2 shows that it suffices to assume
that any e-decomposition exists such that (2.4.6) holds.

Recently HELLAND (1980) has given more elementary proofs of REBOLLEDO's
theorems, while LIPTSER & SHIRYAYEV (1980) have proved a remarkably general
central limit theorem which contains REBOLLEDO's as a special case. However
in our applications the conditions become essentially equivalent.

The following result of LENGLART (1977) has at first sight nothing to
do with martingale central limit theorems. However it is a major tool in
REBOLLEDO's proof of Theorem 2.4.1, and we shall have repeated occasion
to use it in conjunction with the previous theorem. A fixed stochastic basis

is supposed to be given.

THEOREM 2.4.2. Let X and Y be adapted, right continuous, nonnegative proces-—
ses, and suppose also that Y is nondecreasing, zero at time zero, and
predictable. Suppose that for all almost surely finite stopping times T,
EX(T) < EY(T). Then for any stopping time T and any e,n > O,

P( sup X(s) 2¢g) <
sST,'5<®

2 + P(Y(T) > n).

There are two basic ways in which we will make use of Theorem 2.4.2.
Suppose that N is a univariate counting process with compensator A. Suppose
that EN(») < « so that by Theorem 2.3.1 M = N-A is a square integrable
martingale. Let H be a nonnegative, bounded, predictable process. Then the
conditions of Theorem 2.4.2 are satisfied if we take X = f HAN and Y = f HAA,
because f HAM is a martingale on [0,~] and so for any stopping time T,

T
E IO HAM = 0. Thus for any stopping time T and e,n > 0,

1 \ T .
P(JO HAN 2 s} s 2+ pKJO Hda > n).

mis

On the other hand, let N, A and H be as above, except that H is not neces-

sarily nonnegative. We have
(f mam ? - [ 52a<m,m>

is a martingale on [0,»], and Theorems 2.4.2 and 2.3.1 now yield
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s 2 T
P( sup (J HdM) 2 e) < 2 + P(J H (1 -AA)dA > n)
SET,s<= ¥ () 0
T
<y p(J 5aa > n).
¢ 0

Let us also point out one link between Theorems 2.4.1 and 2.4.2: the latter
can be used to show that condition (2.4.6) implies that for all t € L0,)

and ¢ > O,

—-ne
Z,
sup 12"

[o,t]

5 0 as n + «,
Hence condition (2.4.6) together with (2.4.3) and (2.4.4) can indeed be

. n ..
interpreted as stating that the jumps of Zi disappear as n = =,

We now turn to a very different subject. The Skorohod—Dudiey theorem
(see DUDLEY (1968) Theorem 3, or WICHURA (1970)) can be thought of as
providing a converse to the well known result that an almost surely con-
vergent sequence of random variables also converges in distribution. Because
almost sure convergence is stronger than convergence in distribution, the
theorem often provides a short cut in deriving new convergence in distribu-

tion results from old ones.

THEOREM 2.4.3. Let Zm,Zl,Zz,... be random elements taking values in a
separable metric space such that z" D 7" as n > . Then there exists a
probability space with random elements Zm',z ,ZZ',... defined on it such
that zw' has the same distribution as Z  and Zn' has the same distribution

L] L
as Zn, n=1,2,..., and such that zt > 2% almost surely as n -+ «,

Not surprisingly we shall be applying Theorem 2.4.3 with the separable
metric space in question being D(L0O,u)) or D(L0,ul) for some u e (0,»].
Suppose we have shown that 2z ) 2" on D(I) when I is [0,u) or [0,ul. we
shall of course consider the random elements 2z and Z of D(I) as stochas-
tic processes as t € I varies. Suppose that Z" with probability 1 has
continuous sample paths. Then because convergence in the Skorohod topology
on a closed interval to a continuous limit is equivalent to convergence
in the supremum norm on that interval, Theorem 2.4.3 supplies us with pro-
cesses Zn' and Zw' defined on a single probability space with the same dis-

tributions as zn and Zm respectively, such that

ooy

sup lzn'—z | =0
fo,t]
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almost surely as n + « for all t € I (see VERVAAT (1972) Assumption 1.3.3
and the remarks at the beginning of his Section 1.4).

Note that if 7 is a Gaussian process with expectation zero, indepen-
dent increments, and variance function A®(t) = var(Zoo(t)) = cov(Zm(t) ,Zm(u))
if ¢t £ u, then z” has continuocus paths if and only if Aw is continuous; in

general, ZN only jumps at the jump times of Am.



CHAPTER 3

RIGHT CENSORSHIP
AND STOCHASTIC INTEGRALS

3.1. Background

In this section we derive a property common to a number of important
models for "n censcred observations", where n is considered fixed and the
censorship is really "right censorship™: only in Chapter 6 will we consider
general censorship.

We want to model the situation commonly occurring in medical follow-up
trials, industrial life-testing, biological experimentation, and other
fields, in which one is interested in certain aspects of the distributions
of n independent positive random variables Xl""’xn’ but either deliberate-
ly or accidentally is only in a position to observe certain bivariate random
variables (21,61),...,(§n,6n) where for each j, 0 < ij < Xj and
6j = X{x.=%.}" If 6j takes~the value 1, the j-th observation is uncensored
and the Observed value of Xj is also the realizedealue of Xj. However if
dj = 0, the j-th observation is censored at time Xj’ and one only knows that
xj takes ior would have taken) a value strictly greater than the observed
value of Xj'

One might be interested in comparing the distribution functions of the
Xj‘s in particular subgroups, or in estimating some characteristics of the
distribution functions. However for the time being we do not consider the
purpose of the experiment. We start with a number of examples of different
situations involving different types of censored data, giving them their

traditional names.

EXAMPLE 3.1.1 "(Simple) Type I censorship".

In industrial life-testing, Xl,...,xn are supposed to be n independent and
identically distributed positive random variables, with distribution func-
tion F. Often it is thought that F = Fe, where {Fe: 8 € 0} is some parame-

trized family of distributions. The random variables Xi represent the lengths
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of time that n manufactured components function satisfactorily, each operat-
ing from time zero under fixed working conditions. The components are ob-
served up to a fixed time instant u > 0, at which time not all components
may have "failed". So the data on which e.g. estimation of 6 or testing of
the hypotheses F € {Fe: 6 € 0} is to be based is (ij,sj) =

(XjAu'x{XjSU}) ’
j=1,...,n.

EXAMPLE 3.1.2 "(Simple) Type II censorship”.

In the situation of Example 3.1.1, instead of terminating the experiment

at the fixed time u, it is terminated at the time of the r-th observed
failure for some fixed r < n. So if X < ... = X(n) are the order statis-

(1) _
tics of Xl""’xn' the data consists of (Xj,éj) = (XjAX

() XXy () P
j=1,...,n.

More generally, one might stop the experiment at some random "stopping
time", based on the observed data at that moment. The data is now
(XjAT’X{XjST})' j=1,...,n, where T = T(Xl,...,Xn) is such that X{Tst} is
some function of t and (XjAt’X{x-St})’ j =1,...,n. RAO, SAVAGE & SOBEL
(1960) give some examples of suca censoring schemes in a two-sample situa-—
tion.

This type of censorship is sometimes called "progressive censorship"

but the term is more usually applied to the censorship discussed in Example
3.1.5.

EXAMPLE 3.1.3 "Random censorship", "competing risks".

In a biological experiment, one might observe the lifetimes of n experimental
animals under certain conditions, together with the cause of death, which we
suppose can be one of two types A or B. We are directly interested in the
first of these two types ~ the animals may be divided into r groups accord-
ing to different experimental conditions whose relation with A is to be in-
vestigated - while B comprises various accidental causes not directly relat-
ed to the experiment. Let g, be the lifetime of the j-th animal, and let

Gj =1 or 0 according to whither it died from A or B. We suppose that dif-
ferent animals are independent of one another, and that given that animal j
has survived up to time t, the conditional probability that it dies in the

while for

small time interval [t,t+h] from cause A is approximately aj(t)-h,
B it is approximately Bj(t)-h. Here aj and Sj are continuous functions on

[0,2) called the forces of mortality for A and B; one would suppose that o,

is the same for experimental animals in the same group; Bj might be the same
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for all animals, or it might vary from group to group or even within groups.
In this situation (§j,6.) can easily be shown to have the same distribution
as (XJ U. 'X{X <u. }), where Xj and UJ are independent, with continuous den-
sities aj(t)exp( f a (s)ds) and B (t)exp (- f B (s)ds). If for instance

f: uj(s)ds < e, there is positive probablllty that xj = o_ Here, X. can

be thought of as the lifetime animal j would have had were B, idengically
zero and thus cause B inoperative; while Uj is the conceptuai lifetime of
animal j were aj identically zero.

So a model for this situation could consist of 2n independent positive-
or infinite~valued random variables Xj,U.; j=1,...,n, from which the ob-
served data (gj,ﬁj) = (XjAUj’X{XjSUj}) is generated. Xj's within the same
group will always be supposed to have the same distribution. Removing the
implicit restriction to continuously distributed random variables, if the
Uj's within the same group also have the same distribution this is known
as "the model of random censorship". Our "general random censorship model"
(see Example 4.1.1) will allow the Uj's to have arbitrary distributions.

Note that in general there is an identifiability problem; i.e. dependent
Xj's and Uj's with different marginal distributions can lead to the same
distribution for (XjAUj'X{XjSUj}) (see e.g. PETERSON (1975) and TSIATIS
(1978)) .

On the other hand one might even suppose that the Uj's are not inde-
pendent of one another (e.g. animals, subject to an infectious disease,
sharing a cage). However as long as (Xl,...,xn) is independent of

(Ul,...,Un) this would not lead to problems.

EXAMPLE 3.1.4 "Fixed censorship", "progressive censorship of Type I".
In a clinical trial, patients with a certain complaint entering a hospital

between two fixed dates t1 and t, are immediately given a treatment whose

2
effectiveness is to be investigated at time t2. Suppose that conditional on
the number of patients N=n entering between t1 and t2 and their entrance

times E, = €, y.+-, En = e, € (tl'tz)’ the lengths of time Xl""'xn elapsed

betweenltreaiment time and time of eventual relapse are independent and
identically distributed positive- or infinite-valued random variables. The
aim is to say something about their common sub-distribution function F or
to compare it with that associated with a different set of data pertaining
to a different treatment. At time t2 the available data is (§j,5j)

= (X AuL 'X{X < }), 3 =1,...,n, where \.1:| = t2--ej is the fixed "observa-

tion llmlt" for the j-th patient (actually ul,...,un are also known and some
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statistical methods make use of them as well).

EXAMPLE 3.1.5 "Progressive censorship (of Type II)".

We return now to the industrial set-up described in Examples 3.1.1 and 3.1.3.
Supposing the distribution of the n lifetimes xl""’xn to be continuous,

the observation plan is now, at the time of the first observed failure time
components out of

1
-1 remaining components to

x(l)' to remove from the test a random selection of r
the still operating n- 1. Supposing the n- x,
have lifetimes Y,,...,Y ~1,then.at time Y(l)' the next observed failure

n-r

time, a further i2 componeéts are selected at random from those still on
test and removed. This procedure is carried on till a total of s failures
have been observed, with X, components being withdrawn at the k-th stage,
k=1,...,8 ]o_, (r,#1) = n. We now define Xj = Xj and 8, = 1 if the j-th
component is observed to fail at time Xj' and define xi = Xj and di =0 if
the i-th component is one of those removed at this time instant. The observ-
ed data is equivalentNto (gj,Gj), j =1,...,n. We say that component j is

on test at time t if Xj 2 t, otherwise it has either failed or been removed

at an earlier time instant.

Other terms such as "variable censorship" and "multiple censorship"
occur in the literature, but generally one of the above examples is meant.
All of these examples will be included in the general model of this section.
Clearly various mixtures of these situations can also occur (and will also
be included); for instance, in Example 3.1.4, the patients might also be
subject to some "competing risks" such as accidental death from an un-
related cause, moving away from the district covered by a hospital, or what-
ever. Similarly in Example 3.1.3 there might be "planned withdrawals" of
some of the surviving animals at fixed or random time instants for surgical

investigations.

We next mention one example which will not be covered; we shall give
it some attention in Chapter 6. The essential difference between this
example and the previous ones is that the natural time axis in the new
example does not permit one to consider each lifetime as starting on a
new time axis at time t = 0, and still have cause and effect only working
forwards in time. On the contrary, after this transformation the death or

failure of one object at time t could effect the censoring of another at
time s < t.
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EXAMPLE 3.1.6 "Testing with replacement", "renewal testing".

Suppose that in Example 3.1.1, any component failing before time u is im-
mediately replaced by a new one. So at any time instant up to u, exactly
n components of varying age are on test. At the end of the test a random
number of failures have been observed and there are exactly n censored

observations.

We now state the model which will underlie the rest of this chapter
and the following two chapters. Let (2,F,P) be a complete probability space
on which are defined n independent positive, possibly infinite-valued random
variables Xl""’xn with sub-distribution functions Fl""'Fn defined by
Fj(t) = P(xjst), t—F+[O,w), Fj(m) = P(Xj<m). Define nondecreasing functions
Gj with values in R by

(3.1.1)  G.(t) = J (1 - F (s-)) lar,(s).
J selo,t] J J

Define

(3.1.2) Tj = sup{t: Fj(t) < 1}.

We see that for each j, Fj(Q) = Gj(O) =0, Gj is finite on [O,Tj), and
Gj is constant on [Tj,wj. If Fj(Tj—) < 1 then Gj is bounded on L0,), and
AGj(Tj) = 1 or 0 according to whether Tj < @ or Tj = o, In Lemma 3.2.1 we
shall see that if on the other hand Fj(rj-) = 1, then Gj(t) + Gj(Tj) = ®
as t + Tj. If Fj has a density fj’ then defining the hazard rate Xj =
= fj/(l— Fj) (in Example 3.1.3, Aj = aj), it holds for all t that Gj(t) =
= IS Aj(s)ds. Sc Gj can be called the cumulative hazard or cumulative risk
for the j-th object; see again Lemma 3.2.1.

We next suppose that (gj'fj)’ 3 =~1,...,n, are also defined on (R,F,P)
and satisfy almosE surely 0 < Xj < o, xj < xj, and 6j = X{§'=Xj}. Note that
almost surely Gj(xj) < Gj(xj) < @, We now define stochastic processes Nj'

Jj and Mj, j=1,...,n, by

(3.1.3) Nj(t) = X{gjst,§j=1}'

(3.1-4) Jj(t) = X{ijt}l

~ t
3.1.5 M, (t) = N.(t) - G, (X.At) = N.(t —J J.4G..
( ) J( ) J( ) J( 5 ) 3( ) 03 GJ
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We can now state our key model assumptions:

ASSUMPTION 3.1.1. There exist sub o-algebras Ft of F making

(Q,F,P),{Ft: t € [0,)} a stochastic basis and Nj' Jj and Mj adapted pro-
cesses for each j. Mj is a square integrable martingale for each j and

<M, ,M.> = (1-286,)dG,, <M ,M,,>=0 for all 5 # 5'.
54> IJJ( J) g0 MMy, J#A3

ASSUMPTION 3.1.2. For each t e [0,#), conditional on Feor AN (£) res s AN (E)
IR AN J.t.2

are independent zero-one random variables with expectations Jj (t) AGj (t),
ij=1,...,n.

We shall interpret these assumptions by relating them to the counting
process theory of Section 2.3. It is convenient to consider the adaptedness
requirements of Assumption 3.1.1 apart as a background assumption for both
3.1.1 and 3.1.2.

The adaptedness requirements are equivalent, given the stochastic
Easis (Q,F,P).{Ft: te [0,9}, to requiring that X(%. <t} ij{?('.st} and
ij{iSt} are Ft~measurable for each t and j. In fac%, Assumptions 3.1.1
and 371.2 are satisfied with respect to some stochastic basis if and only

if they are satisfied with respect to the minimal basis defined by setting
for each t

Fo = NV ol <oy 505 o) Ryig s 3 = Loeenimd,
] J J

where N consists of all P-null sets of F and their complements. Whatever
{F t} may be, we are supposing that the §j's are stgpping tj.mes~and that the
events {6j=0} and {62=1} happen at or before time Xj (at time Xj, if {Ft}
is minimal). If the xj's are lifetimes, we are Supposing that all lifetimes
commence at time t = Q.

Given these background assumptions, Assumptions 3.1.1 and 3.1.2 in ef-

fect treat the continuous and the discrete cases respectively. If X. has a

continuous distribution for each j, Assumption 3.1.2 is empty; on the other

hand, if Xj and ;j are integer valued and Ft = F[t] for all t € [0,»), then
Assumption 3.1.2 implies Assumption 3.1.1.

Now by the adaptedness requirements, NJ. is a counting process and

f deGj is predictable (for Jj is clearly predictable, and considered as

a process, Gj is too). So requiring that M, is a martingale is equivalent
to requiring that Nj has compensator f deGj. Thus f deGj can be thought
of as the integrated conditional rate at which Nj jumps. We shall see

bresently that Assumptions 3.1.1 and 3.1.2 are satisfied if there is no
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censoring at all. So we are stating that at time t, given Ft’ if §j >t
then Nj has the same conditional probability of jumping in the small time
interval (t,t+h) as if there had been no censoring. As to what this rate is:
if Fj has a continuous hazard rate Aj' then this conditional probability is
approximately h'Xj(t). On the other hand, given Ft’ if Xj < t, then the
conditional probability of jumping in (t,t+h) is zero.

The requirement that <Mj,Mj> = f (1--AGj)deGj follows directly from
Theorem 2.3.1 and need not have been made separately. If Fl""'Fn are con-
tinuous then {N1,...,Nn} forms a multivariate counting process and the
requirement <Mj,Mj.>= 0 also follows from Theorem 2.3.1. Otherwise it can
be interpreted as a kind of pairwise independence condition, and it can in
fact be derived from the following weaker version of Assumption 3.1.2: for
each t and j # j', conditional on Ft-' ANj(t) and ANj,(t) are independent.

Assumption 3.1.2 itself is very simple to interpret, if we recall that
AGj(t) = P(Xj=t|Xj2t). Note also that Eth ='Xj2t; and §j = t and
6j=1 = xj=t. So we ari stating that given what has happened up to bgt not
including time t, if Xj~< t, then the conditional probabiiity that Xj =t
and 6j = 1 is zero; if Xj Z t, then the probability that Xj = t and Gj =1
is equal to P(Xj=tlxj2t)' Furthermore,Nstill working conditionally on Ft—’
for j's such that Xj 2 t, the events {Xj=t,6j=1} = {Xj=t} are independent.

The next theorem gives an intuitively meaningful condition under which
Assumptions 3.1.1 and 3.1.2 hold; as a corollary it follows that these
assumptions hold in Examples 3.1.1 to 3.1.5 and when there is no censoring.
The proofs of this and the following theorem simplify greatly when the Fj's

are continuous.

THEOREM 3.1.1. Let (Q,F,P),{Ft: t € [0,9)} be a stochastic basis on which

random variables Xj, gj and Gj (j =1,...,n) are defined, satisfying

<X, < < x, 8, = Xov Imost £ h . The X’
0 XJ ®, Xj 3 and j X{X-=X-} almost surely for each jJ e 3 s

are supposed to be independent, with (sub)-distribution functions Fj;
-1
i = - . ~ ~ F -
define Gj f (1 Fj_) dFj Suppose that X{X‘St} and st{X-St} are
measurable for each j and t. If for each t, conditional on £ the Xj’s

with ;j > t are independent of one another, each having the distribution

of Xj given Xj > t, then Assumptions 3.1.1 and 3.1.2 hold.

PROOF. The measurability requirements of Assumption 3.1.1 follow directly

from the measurability requirements of the theorem. Next, let I1 and I2 be

disjoint sets of indices contained in {1,...,n} such that I, is nonempty;

1
17 and define I, = Il\{jo}. Consider the uni-

variate countin rocess N = . AN, - | 1 - AN.)dN; which counts 1
g p S Jg&o 3 Jé&2( 3) ANy whi ounts

let jO be a fixed member of I
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at the single time instant t, if it exists, for which Xj =t and Gj =1 for

all j € I,, provided that for no j € Iy X:j = t and 5 = 1. (An empty

LA
‘product equals 1.) Fix t < « such that Gy {t) < @ and define t m, i i2 7t
i= Ol---12 ;m= 1,2

t+-- . For any m and i< ; define the event Bm by
’
= V4 X et e L 015
Bm,i v « Il’ fj z tm,i and xje ( m,i’ m,i+1 )
0 o~ > .
Vi € I, xj < tm,i or (xj > tm'i and xj m l+1)

We shall approximate the increment of N over the interval (t ,i’tm,i+1
with me ;7 in fact we have

Gr6 e, oy D-xg | <]

LT LR Ky Ko<t )
m, i Jjel m,i

1 ’ J ] m,i+1
+ z x{'i v

#3Ter HHyr¥y T, iRy
+ )

Xy R .
Jety,srer, RyRgoty XgRgete e 5% X0

j'e(tm,l m1+1] X#X 3

Now by the conditions of the theorem,

E(XB “"

m,i m, i

Py, 1e1) " Fyey 1) Py, a00) —Fy (e 3)
= H(Jj(tml) I—P(t ) I 1-J(tm1) 1 - F,(t )
eI, ’ itm,d jeI ! 3%, 1
=J L L L
se{t  _,t 1 jer, 3 Wi V-Fyte 0

: i m, i
m,i’ m,i+l O Jm

)=F.(t_ )
. ﬂ(l—Jj(t )j m1+1 Jm,l).J

1
“ud TOE, w7 &y ()

jeI2 - F (¢ ,i) J0 30 m,i Jo
Thus
2"‘2-1 | t
E(x Fo =J Y aF, ,
i=0 Boi tm,i o ™ Jo

where 0 < Ym(s) s (1~ Fjo(t—))_ < @ for all m and s and where

8F  (s) AF (s) Jjo (s)
Y(s)*H J(s)*-————-_——n (1-J.(s) >
3610 J Fj(s )j€I2 ] 1 Fj(s—) —Fjo(s—)

s m >« for all s, outside of an event of probability zero. Therefore,
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with the above choice of versions of E(XB IFt ), we have
m m,i Tm,i
27~1 t
YoOEx [F. )~ TJ.AG. T (1-J.4G,)J. 4G,
o FWe o e . . 37733,
i=0 m, 1 m, i 0 JtIO ]ch 0 0

as m - = almost surely.

Next we consider the terms on the right hand side of (3.1.6). We have

}lFt )) = p<o<xj-§j<2‘mt) + 0

<X, <X_ <t ‘
i 73 73 m,i+l m, i

i= m,

as m - «. Similarly we can bound the expectation of the sum over i of con-

ditional expectations of any of the other terms on the right hand side of

(3.1.6) with PUIX =X, = 2%, X,#%,,) > 0 as m > ®. Thus for any bounded
random variable Y,
21
E(y- '} E(N(t_ ., -Nt_ O|F_ )
120 m,i+l m,1i tm,i
t
+ E(y - J n 3,06, 1 (1-J.4G6,)3. 4G, ).
0 je1, jet, 733y Jo

Let the compensator of N be A. By Theorem 2.3.2 we now have, for all t < =

such that G; (t) < o,
Jo

t
(3.1.7) A(t) = I I J,AG, T (1-J.AG.) J. 4G, almost surely.
0 jer, jeI, I3 3 Jo

We next show that A is constant on [ijo,m). Define

T = inf{t 2 §. : A(t) - A(E. ) 2 e}, e >0,
€ Jo g

~

where inf @ = . XjO and Ts are stopping times, X < Te’ and by Theorem

Jo
2.3.1, M = N- A is a martingale on LO,»]. So by Doob's optional stopping

theorem,
N(X. = ~A(X. > .
E(T) N(X]O)) E(A(TE) A(XJO)) e P(T_ < =)
But N is constant on [ij ,®) so P(TE < @) = 0 for each € > 0. With probab-
0

J

ility 1, Gj (ij ) £ Gy (Xj ) < o, By right continuity of A, (3.1.7) with the
0 0 0 0 ~
fact that A is constant on [Xj ,») shows that the processes A and
0
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T J.0G, T (1-J.AG,)J. 4G.
. A 33 73y 3
jEIO e, 0
are indistinguishable.
Taking I = {3}, I, = @ shows that Nj, defined by

Nyt = X{EjSt,aj=1}

has compensator Aj = f deGj. Hence by Theorem 2.3.1, <Mj’Mj> =
= I (1-JjAGj)deGj. To show that say <M1,M2> = 0, consider the processes

¥ e f AN,) AN
Nl = (1- N2) 1
g f 1 dnN
N2 (1- ANl) 2
* [ a

N3 = Nlsz.

* k%
Note that {NI'NZ’N3} is a trivariate counting process, with compensators

=1 AG,)J,dG
Ay =) (1-7,46))3,d6)
*

a, = f (1-3,06,)3,46,
*

a3 = I 3,46,3,d6,

*

* * * ok
by various choices of I, and I.. Define Mi N.-A.. Since N,+N, = N, and
*

1 2 R 13 1
* * * * *
N2+N3 = N2 we also have A1+A3 = Al and A2+A3 = Az. Therefore
<] > = <] * * *+ *> = < * *> <] * *> < * *> <] * *>
MI'MZ = M1+N13,l\'12 M3 = M1 ,M2 + M1 ,M3 + M3,M2 + 1"13,M3

* * * * * * * * *
=~ ta da, - f bajan; - f An.an, - f bAjARL + A%
(by Theorem 2.3.1)
*

3

- [ a@TaaNyamt k)
1 A3 (A2 A3 + A

]

- f taaa, + f 4 da,
= 0.
This completes the proof that Assumption 3.1.1 holds. Now for any martin-

gale M, E(AM(t)[Ft_) = 0. Applied to the martingale M = N-A, we have
Eane) |[F) = ma(b), i.e.
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P(ANj(t) =1Vvje1, ANj(t) =0 Vje1, | Foo

= I J.(t)AG.(t)+ I (1-—J.(t)AGj(t)),
jEI1 J jeI2 J

which shows that Assumption 3.1.2 holds too. L[]

Considering the Xj's as lifetimes, commencing at time t = 0, we can
interpret "Xj > t" as stating that the j-th object is under observation
just after time t. So the intuitive content of Theorem 3.1.2 is that our
assumptions hold if, for every t, given what has happened up to and includ-
ing time t, the remaining lifetimes of the objects which are still under
observation just after time t have the same joint distribution as if there
had been no censoring. In particular, the fact that an object has not been
censored in [0,t] gives no information about its remaining life distribu~
tion. Such a condition is often used to give informal justification for

various procedures in the analysis of censored data.

COROLLARY 3.1.1. Assumptions 3.1.1 and 3.1.2 hold for Examples 3.1.1 to
3.1.5.

PROOF. It is given that Xl""’xn are independent, with distribution func-—
tions Fl""’Fn' Examples 3.1.1, 3.1.3 and 3.1.4 are special cases of the

following: (Uj,...,U ) is independent of (X,,...,X ), and S?j =% AU,
Sj = X{X-SU.} for each j. Example 3.1.2 is a special case of Example 3.1.5.
In Example 3.1.5, suppose that the randomizations needed at the first

s-1 stages in this example are generated by random vectors Vl,...,VS_1 (so
Vk specifies which objects are to be removed from those remaining at stage

k). Suppose that Xl""’Xn’ Ul""’Un or Xl""’xn'vl""’vs— are defined

1
on a complete probability space (2,F,P); let N in each case be the o~algebra

of all P-null sets of F and their complements; and define

-
L}

NV O{Ul,...,Un, ij{xj=§jst}: j=1,...,n}

or

Tt
]

NV U{Vl,...,Vs_l, XjX{X.=§,St}: j=1,...,n}

J 3
for the first or second set of examples respectively. The conditions of
Theorem 3.1.1 are now easy to verify (and the discussion in Appendix 2 shows

that (Q,F,P),{Ft: t € [0,%)} is indeed a stochastic basis). []
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Other choices of {Ft} in the proof of Corollary 3.1.1 would have been
more natural and would also have satisfied the conditions of Theorem 3.1.1.
However the above choice is useful in applying the next theorem to Examples
3.1.1 to 3.1.5. This theorem specifies the likelihood ratio based on the
Observations (gj,éj), j=1,...,n for the hypothesis H: Xj has distribution
function Fj, j=1,...,n, and H': Xj has distribution function Fé,

j =1,...,n. The conditions imply those of Theorem 3.1.1, both under H and

H'; they are discussed after the proof. We shall only need this theorem
in Chapter 5.

THEOREM 3.1.2. Let (Q,F,P),{Ft: t e L0,%)} and (Q,F,P'),{Ft: t e [0,#)}
form two stochastic bases, and let Xj’ gj and dj' j=1,...,n, be random

~

variables with the usual.properties 0 < ij < o, Xj < Xj' Gj = X{xj=§j}’
(3 = 1,...,n) almost surely P and almost surely P'; suppose that
Xl""’xn are independent under P and P' and that P(stt) = Fj(t),
P'(stt) = F%(t), t € [0,#), for (sub)-distribution functions Fj and F!,
j=1,...,n.

Suppose that under P or P', for each t, conditional on Ft' the X.'s
with Xj > t are independent, each having the distribution of Xj given

Xj > t (corresponding to P or P' respectively). Suppose that
Fo=F X IPRTEE I P
e 0 v U{xjx{xj=XjSt} j=1, n} for all t

ij{ijst} is Ft—measurable for all j and t,

P and P' agree on FO
and

P and P' are absolutely continuous with respect to one another

on Fm.
Then on (Q,F )
ar' 1 - Fi(X.)
dp’ ~
(3.1.8) r I EF‘J—(X.) I TT‘E,JT}?l)—
j:6,=1 35 I 518,20 %5
3 3
p - ch(ij) &G . 4 1= Fi(ij)
T 3:8.=1 1< Aal (R ac. Xy T 1= :
I0y 3 46Ty T E R
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PROOF. We apply Theorem 2.3.3 to the (27-1) -variate counting process with

components indexed by the non-empty subsets of {1,...,n}:

{N = J i AN, T (1~ AN.)dN.
I J J

:Ic{1l,...,n}, I # ¢},
jer\{igh 7 et

0
where jO is an arbitrary member of I. As was seen in the proof of Theorem
3.1.1, Ny has (under P) compensator

1 306, T (1 - 3;86,)3, 4G, .
sNEN I 3¢ 330 o

Note also that the sum of all the components of the above counting process

is the univariate counting process

n
N= ) J I (1 - AN,,)AN,,
=1 7 3'<j I

which counts 1 at each jump of 2?_1 Nj' and which has compensator

n
A= 7 J I (1 -J.,A6,,)J.4G..
5219 50 R R R
~ n ~ n
We also have A_ = Zj=1 I dejS and 1 - AA =~j£1 (1 - JjASj)' Let
T1 < ... < Tm be the distinct times at which N jumps (m = N(«) is random).

By Theorem 2.3.3, on F_

m aG' 1-AGLH(T,)
(?:;l = 1 ~ = ac &3) o o 1—AGJ(TE)) )
=1 3:xj=T2,6 =1 Jj ]:Xj>T2 or 3 e
X =T2 and §.=
Hn - N - n © 1
( po B U-geeeie)y el fp 35060
sé{Tl,...,Tm}np

n -]
51 (1738286 (s)) exp(—zj=1 I 358650)

aG! 1- 86, (X))

= it —J-(x ) . i — . ®
. 4G, 1-AG! (R,
J:6j=1 j 7 3:6j=1 J( 3)

. n (Hs(l"Jj(S)AGj(s)))exp(~Io 3,464 i

3=1 (I (1= 3,(s) 86, (s)))exp(~f ) T48Gy )
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o _dfj_(;) 1-—AG.(§.)) . L-FL(X)) by e 32108
j:6j=1\de 3 1-865 X)) 1-Fy (X))

= I -di(~ Yy I 1_Fi'i(§j) q

i jady=t Fy 316420 L-F ) 7

The expression on the right hand side of (3.1.8) is often used as a
likelihood ratio on intuitive grounds, see e.g. COX (1975) and BRESLOW
(1975) . Note that with the definition of Ft given in Corollary 3.1.1, the
theorem applies to all of Examples 3.1.1 to 3.1.5, if changing P to P' only
changes the distributions of the Xj's, and not of the Uj's or Vk's.

The extra condition in Theorem 3.1.2 on the o-algebras Ft'can be in-
tuitively interpreted as requiring that all random aspects of the censoring,
except in so far as they are generated by the lifetimes xj themselves, can
be conceived of as being realized at time t = 0, which is hardly a restric-
tion at all. What is a restriction is that P and P' should agree on FO; i.e.
censoring gives no information on which probability measure holds, except

in so far as it depends on the Xj's.

3.2. One sample case: the product limit estimator

In this section we specialize the general model given after the exam-
ples of the previous section by supposing that F1= ...==Fn:=F, say.

Define G = Gj (see 3.1.1), 1T = Tj (3.1.2), and recall the definitions of
Nj, Jj and Mj (3.1.3 to 3.1.5). We assume that Assumption 3.1.1 holds, but
will not need Assumption 3.1.2 in this section.

The product limit estimator F = {F(t): t ¢ [0,#)} is an estimator of F
based on the observations (gj’aj)’ j =1,...,n, which reduces to the usual
empirical disEribution function based on Xl,...,Xn if Gj = 1 for each j
(recall that Xy =%y if 85 = 1, otherwise ij < ¥y and §; = 0, where the
Xj's are independent and identically distributed with distribution function
F). The estimator F was introduced in statistics by KAPLAN & MEIER (1958),
and a closely related estimator of log (1-F) by NELSON (1972) . However versions
of it had long been known in the fields of demography and actuarial science.
Recently, smoothed versions have been proposed (F itself is a step function),
€-g- by AALEN & JOHANSEN (1978) and FOLDES, REJTS & WINTER (1980).

BARLOW & CAMPO (1975) bropose another estimator of a certain transform of F,
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called the "total time on test plot". However there are some difficulties
in applying this to censored data which have not been resolved yet. In Ap-
pendix 5 we make some suggestions in this direction.

F can be described as the sub-distribution function on [0,®) which
only assigns mass to the values of the uncensored observations, and which

does this in such a way that for any t ¢ [0,®),

A(E) #{3: Xy=t, «sj=1}
1-F(t-) #{3: S(j 2t}

(3.2.1)

When F is discrete, the right hand side of (3.2.1) is a very natural estima—
tor of P(Xj=t|xj2t) = AF(t)/(1-F(t-)). F can often be thought of as the
maximum likelihood estimator of F (the term needs qualification because in
its usual sense, one does not exist, there being no dominating measure for
the set of all measures on [0,x), see e.g. JOHANSEN (1978)). It will be
seen that the above definition allows F to be less than 1 and constant to
the right of the largest observation ;j’ if this observation or one of
the group of tied largest observations is censored. Other definitions of
the product limit estimator set it equal to 1 on this part of the real line,
or leave it undefined there.

We presently give a concise definition of F in terms of the processes
Nj and Jj, j=1,...,n, and establish some of its small sample properties.
In Section 4.1 we prove consistency under a generalization of the random
censorship model (covering Examples 3.1.1, 3.1.3 and 3.1.4) and in Section
4.2 we show how the estimator can be used to give confidence bands for the

unknown F, and confidence intervals for F(t) for fixed t.

Define processes N, Y, M, J and the product limit estimator F by

n
(3.2.2) N(t) = )] N.(t) = #{j: X, <t and §, = 1}
51 9 3 3
n ~
(3.2.3) Y(£) = ] J.(t) = #{3: X, 2 t}
Ly 73 3
J
s t
(3.2.4)  M(t) = )] M,(t) = N(t) - [~ YdG
oy 0
3
(3.2.5)  J(8) = Xty (g > 0
and /
- _ _ An(s)
(3.2.6) F(t) =1 sgt \! - e )

where the convention 0/0 = 0 has been applied. N is nondecreasing and right

continuous, Y is nonincreasing and left continuous; both take values in
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{0,1,...,n}. Also we have Y(0) = n almost surely and AN(s) < Y(s) for all
s;if eqguality holds for some s then for t > s, N(t) = N(s) and Y(t) = 0.
In any case Y(») = 0 almost surely. It is easy to check that (3.2.6) cor-

responds to the earlier verbal definition of F. Since

(1-F(t)) I

(1 _ ¥(s) - Y(s+) - AN(s)) _Y(tH)
s<t

Y(s) - AN(s) n

we see that (Y+/n)/(1— F) is nonincreasing, nonnegative, and takes the
value 1 at time zero (it can in fact be interpreted as 1 minus the product
limit estimator of the censoring distribution). These facts give us in

particular the right hand part of the inequality
N/n<Fs<1- (Y+/n).

The left hand part follows by comparing (3.2.6) with the equality

N{t) ( AN(s) )
= =1- q (120 )
n s<t n - N(s-)

Equivalent to (3.2.6) is the implicit definition

(3.2.7 o) =j (- FEL
sel0,t] s

Note that F and G satisfy

(3.2.8) F(t) = (1-F(s-))dG(s),

'[sefo,t]

AN o -1 .
SO 1t is not surprising that J' Y "dN, the so-called empirical cumulative
hazard function, can be considered as an estimator of G; see e.g. NELSON

(1972). The following lemma shows that given G, equation (3.2.8) implicit-

ly determines F, which suggests why (3.2.7) and (3.2.8) will be so impor-

~1 . -
tant: the closer f Y "dN is to G, the closer will F be to F. The proof is

purely analytic and is given in Appendix 4.

-1
LEMMA 3.2.1. Let G = f (1-F_) "&F for some (sub)-distribution function F

with F(0) = 0, and define T = sup{t: F(t) < 1}.

(i) (3.2.8) uniquely determines F if G is given; and F can be written as

(3.2.9) F(t) =1 - 1

(1 - AG(s)) *exp(-G_(t))
sst ¢

for all t.
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(ii) F and G are constant on [1,®), G is finite and AG < 1 on [0,T1). If
F(1=) < 1, then G(1) < o and AG(t) = 1 iff F(1) = 1. If on the other
hand F(t~) = 1, then G(t) 4 G(t) = = as t 4 1.

(iii) If F has a density f, then defining the hazard rate or failure rate X

by A = £/(1~-F),

(3.2.10) G(t) = A(s)ds for all t.

Js&[O,t]

More generally, if F is only continuous, we have
(3.2.11) G = - log(l-F).

(iv) For all t such that F(t) < 1,

(3.2.12)

1= F(e) _ o, Jt 1 - F(s-)(dn(s)
1 - F(t) o L -F(s \Y(s)

- dG(s)).

Relation (3.2.12) will later be extremely useful for deriving asymp-—
totic results for F. It can also be derived from Theorem 3.1 of AALEN &
JOHANSEN (1978) who used it for the same purpose. In the meantime we shall
couple (3.2.12) with Assumption 3.1.1 to derive some well-known results on F.

Recalling the Definitions (3.2.4) and (3.2.5) of the processes J and
M, and using (3.2.12), we see that for t such that F(t) < 1 and Y(t) > O,

1]

t ~
(3.2.13)  F(t) - F(t) (I-F(t))J L'Lg(dm-mc)

Ol—F
t ~
- . 1 -F_ 3
= (1-F(t)) JO T—F YdM.

Let us define a stopping time T by
(3.2.14) T = inf{t: Y(t) = 0}.

Note that F and M are constant on [T,») and that (3.2.13) holds with t = T
provided F(T) < 1. So for any t such that F(t) < 1,

t
aM

1-F_
F

(3.2.15)  F(t) =F(t) = (1-F(t)) J o

<KIg

0
T

- J
+ X{T<t}(F(t)—F(t)- (1-F(t)) J T°F ¢ dM) =
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t - -
1-F_J - o F(T) - F(T)
= (1-F(t)) ‘[0 -7 ¥ aM + X{T<t}(F(T) F(t) - (1 F(t))-———————1 F >
t - -
_ 1-F_ J (1-F(T)) (F(t) —F(T))
= (-F(©) Jo ToF ¥ M7 X{pet) 1-F(T) ’

Now by Assumption 3.1.1 and Definition (3.2.5), M is a square integrable

martingale, while 11__2," % is bounded on [0,t] for each t with F(t) < 1 and is

predictable (J, Y and f‘_ are left continuous adapted processes while F is a

deterministic process). So by (2.2.1) we obtain on {t: F(t) < 1}

(3.2.16) EF = F - E(X{T<t}(1—F(T))l(lj(;)('l-‘-)F(T)))

So F is in general biased downwards, and is unbiased on {t: F(t) < 1} if
and only if almost surely, F(T) = 1 or F is constant on {t: t = T and

F(t) < 1}. A sufficient condition for unbiasedness is that almost surely,
¥Y(1}) > 0 or for some t < T, AN(t) = ¥Y(t); i.e. if the largest observation
is less than 1, it, and all observations equal to it, must be uncensored.

In this case, if F(t) = 1, then F(T) = 1 almost surely and we have unbiased-

ness on [0,x).

Relation (3.2.16) shows that the absolute value of the bias of ﬁ(t)r

increases as t increases, and yields the following bound (true for all t
such that F(t) < 1):

(3.2.17) 0 < F(t) - EF(t) € F(£)P(Y(t)=0).

This improves the result given as the theorem in Section 2.2 in MEIER
(1975), which concerns a continuous distribution function F and the model
of fixed censorship (Example 3.1.4), and gives a slightly weaker bound.

We next briefly study the variance of F-F, corrected for its
"random bias"; i.e. defining

(1-F(T)) (F(t) - F(T))

(3.2.18) B = “X{pet) 1-F(T) ’

we look at the variance of

F-F-B = (1-F) jl"F*%aM

(cf. (3.2.15)). We shall use (2.2.2). By Assumption 3.1.1 and Definition

(3.2.4), <M,M> is given by
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(3.2.19)  <M,M> = [ Y(1- AG)dG.

So by (2.2.2), for t < T,

(3.2.20)  var(F(£) - F(£) =B(£)) = E((F(t) - P(£) - B(£))2)

t ~ 2
(1—F(t))2j E(“‘F-’ J> 1=46 4

0 ¥ (1-1)2
t L2

= (1-Fn? J' E(“'YF-) J) £ .
0 (1-F_)°(1-F)

This suggests that the following quantity could be used as an estimate of
the variance of ?(t)-—F(t) for asymptotic purposes:

t t

- _ s 2 J - = 2 v
(3.2.21)  v(t) = (1-F(t)) Jo Yi-5 aF = (1-F(t)) }'o Y (¥ - AN

This is in fact the estimator proposed by KAPLAN & MEIER (1958), formula
2f; we investigate it further in Section 4.2. Using the inequality
¥/n £ 1-F_ and (A.4.7) it follows straightforwardly that

G(t) = n YR(e) (1- F (o)

with equality if and only if there are no censored observations in fo,t].
The next result gives an "in probability linear bound" for the product
limit estimator. Similar results for the empirical distribution function
are well known; see for instance the references in SHORACK & WELLNER (1978).
In VAN ZUIJLEN (1978) Theorem 1.1 and Corollary 3.1 these results (still
for the empirical distribution function) are generalized to the case of not
necessarily identical or continuous distribution functions. We are still
assuming that Fl = ... = Fn = F, for some not necessarily continuous (sub)-

distribution function F; and Assumption 3.1.1 is supposed to hold.
THEOREM 3.2.1. Defining

T = sup{t: ¥Y(t) > 0}
we have for all B € (0,1)

(3.2.22) p(1-F < g t(1-F on 0,7 2 1-8.
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PROOF. Define

_ 1-F(tAT)
Z(t) =TTy ¢ t e [0,=).
By (3.2.12), Z is a martingale on [0,t] for every t such that F(t) < 1. So
by Doob's submartingale inequality for every B > 0 we have
1

P( sup 2Z(s) 28 ) <B E|z(t)] =8 E(@(t)) = 8 E(z(0)) = B.
S€[Olt] '

So we have
P(1-F < s'l(l-F) on [0,tAT]) 2 1-8.
Recalling that 1 = sup{t: F(t) < 1}, by letting t + T we find

P(1-F <8 (1-F) on [0, TI\{t}) = 1-8.

If F(1_) = F(1), P(F(1) = F(1_)) = 1. If F(t_) < F(1) = 1, we have

P(T=t and F(t)=1) = P(T=t). So in both cases we obtain (3.2.22). [

The bound in (3.2.22) is surprisingly sharp; DANIELS (1945) and
ROBBINS (1954) show that (3.2.22) holds with eguality when there is no
censoring and F is continuous. In Appendix 6 we present a proof inspired
by TAKACS (1967) explaining why DANIELS' and ROBBINS' result is so simple
and why in particular there is no dependence on n.

One might have expected (cf. VAN ZUIJLEN (1978) Theorem 1.1) that
results similar to (3.2.22) on P(1-F 2 B(1-F) on [0,T)), P(F < 8 'F) and
P(F 2 BF on {t: N(t) > 0, ¥(t) > 0}), could be obtained for the product
limit estimator. However we have not succeeded in deriving this kind of
result in as much generality as in Theorem 3.2.1; fortunately we only need
the following rather limited result in the sequel.

PROPOSITION 3.2.1. Suppose that F1 =...=F

distribution function F, and suppose that Assumption 3.1.1 holds. Define

n = F for some continuous (sub)-—

F

(nF+1)/(n+1).

Then for all e
and o € (0,1)

> 0 there exists B = B(e) € (0,1) such that for any u € [0,%)

(3.2.23) P(F 2 ofF on [0,ul) 2 1-e-P(¥(u) < an).
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PROOF. 1f F(u) = 1 then Y(u) = 0 almost surely, and (3.2.23) holds trivial-
1y for any ¢ > 0. So we let u and a be fixed, and suppose that F(u) < 1.
Wwithout loss of generality we may then also suppose that G = f (1-F)-1dF is
finite on [0,®) and G(») = <. Let k = [an]+ 1. The events {¥(u) > an} and
{v(u) 2 k} are identical. Also by the inequality F > N/n (see the discus-

sion after (3.2.6)) we have
F 2 (N+1)/(n+1) = a(N+1)/(an+a) 2 a(N+1)/(k+1).
*

k
which are independent and identically distributed with distribution func-

*
We shall establish (3.2.22) by constructing random variables Xl,...,x

tion F and satisfy, on the event {Y(u) 2 k}
N(t) = NT(t) = #{i: X €t} for all t e [0,ul.

For then, by VAN ZUIJLEN (1977) Lemma 2.3.1 (or by the remarks preceding
Theorem 1.4 in VAN ZUIJLEN (1978)),

P((N"+1)/(k+1) 2 BF on [0,2)) =1 - 0a(1) asB + 0

uniformly in F and k, and (3.2.23) holds.

*
In fact only N will appear explicitly in the following construction.

Let as usual Ni and Ji’ i=1,...,n, be defined by

Ni(t) = X{iist and 6i=1}
Jile) = X{ﬁiZt}’

so that N = 22_1

define counting processes

n .
N, and Y = Zi=1 J,. Extending (,F,P),{F : te [0,=)},
Nn+1""’Nn+k which are independent of the

original sample space and of one another, and are such that each Nn+i'

i=1,...,k, is a time inhomogeneous Poisson process with E(Nn+i(t)) =G(t)

for all t. Under this extension
My =N, - f 386, i=1,...,n,

remain martingales, and

M, =N, -G, i=n+l,...,n+k
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are martingales too. The idea of the proof is that Nn+1 PR ’Nn+k supply a
reserve of processes jumping at the correct rate, so that by registering
the jumps of some of the processes Nl’ ""Nn+k we obtain a new counting

* .
process which jumps at the same rate as N , defined by
*
N (t) = #{i=1,...,k: X; < t}.

We shall only need to draw on our reserve if less than k of Nl’ ---sN are
still available, i.e. if Y < k.

Let us define a process K as follows: K(0) = k, K is left continuous,
nondecreasing, takes values in {k,k+1,...,n+k}, and only jumps at the times
of the censored observations. It does this in such a way that if at time t,
Ji(t) =1, Ji(t+) = 0 and Gi = 0 for exactly r of the i's satisfying
i £ K(t)An, then K(t+) = K(t) + £ where £ is the smallest positive integer
such that exactly r of the i's between K(t) +1 and K(t) + £ satisfy i > n or
i < n and Ji(t+) = 1. At time t we shall be registering the jumps of
Nl""'NK(t);- so this definition ensures that if one of the Ni's whose jumps
are being registered is censored, it is immediately replaced by a new one.
Since there are at most n censored observations, K can never exceed the
value 2n; we shall see presently that K actually does not exceed the value

n+k so that we indeed only need to construct Nn+i for i < k. Next we define

processes Ji for i = n+l,...,n+k by requiring these processes to be left

continucus and {0,1}-valued and to satisfy J;(0) = 0; J; jumps to 1 at time
t if and only if K(t) < i but K(t+) 2 i; and Ji jumps back to zero at
(i.e. just after) the first jump of Ni after t.

Finally we define

n+k
N = ¥ J.aN

L) Xxeiy YiNNy -

i=1

Y * .
Note the following facts. N is a counting process, because the Ni's with
R . : k
probability 1 never jump simultaneously. Bec *_ynt i
v jump y. Because M Zn—l f X(gsi} T3, is

a martingale, we find that the compensator of N* is A* defined by

* n+k
A (t)

J X ;1 J:(s)dG (s)
i=1 Jsefo, g 1K(8)2} 1

K(s)
J ( ) Ji(s)>dG(s).
sel0,t]

i=1

]
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K * )
Now Zi=1 J, =k — N_. For both members are left continuous and integer

i
valued. Both take the value k at time zero. Finally, both have the same

jumps at the same times: for each process only jumps when one of the Ji's

jumps, and if at time t there are r1 i's with i < K(t), Ji(t) =1, Ji(t+)==0
and ANi(t) = 0 and r, i's with i < K(t), Ji(t) =1, Ji(t+) = 0 and
ANi(t) = 1, then at time t+, K has increased to such a value that
K(t+)
J. (t+) = ry

i=K(t)+1
while K (t) K (t)

2 Ty (e4) = .z I (8) - T,

i=1 i=1

K(t
so Ziilﬂ 3 (e4) = ZI;__ET) 3 (£) - r,, while N'(t) = N'(t-) + r,. From the

* *
fact Z§=1 J; = k-N_ we deduce that N (©) = k. From this it follows that K

indeed never exceeds n+k, for otherwise N* would count a jump of Nn+i’
i 2 1, for more than k i's. From the relation Z§=1 J;, =k - Nt it also fol-
lows that Y(u) 2 k implies K(u) < n. For suppose Y(u) 2 k but K(u) > n. For
some t < u we would then have K(t) < n and K(t+) > n, and Z§i§+)Ji(t+) >
> ¥(t+) = Y(u) = k, implying that N (t) < O.

We have now also shown that N*has as compensator f (k - Ni)dG. But
by Corollary 3.1.1, N* would also have this process as compensator were
it defined by

*
N (t) = #{i: X: < t},
* *
where xl,...,xk are independent and identically distributed with distribu-
tion function F. Hence by Theorem 2.3.4, N* has the same probability dis-

tribution as if it were defined in this way. [

The restriction above to continuous distribution functions could have
been dropped, but only at the cost of an even more complicated proof in
which Assumption 3.1.2 would be needed. On the other hand, similar results
to Proposition 3.2.1 can be obtained very easily from the results in VAN
ZUIJLEN (1977,1978) under the general random censorship model (Example
4.1.1) by using the inequalities v

N/n < F <1 - (v, /n)

and the fact that under this model, N/n and 1—-Y+/n are empirical distribution
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functions of independent but not identically distributed random variableg.
With such an approach, no extra difficulties are involved if F is allowed
to have jumps.

Finally we derive a minor result for later use:

PROPOSITION 3.2.2. If Fy = ... =F =F and Assumption 3.1.1 holds, then

[ (an-1)an - [ Y(Y-1)AGdG
is a zero mean martingale on the time interval [0,«].

PROOF. First note that

[ (AN-1)AN = -N + [ ANAN = -N + | (AM+YAG) (dM+Y4G)

-N + [ AMam + | v2acaG + [ vamaG + [ vaGcam

N+ [ aMan + [ Y20GdG + 2 [ vAGaM.
Now | YAGAM is a martingale on [0,%], for YAG is a bounded predictable
process. By MEYER (1976) Theorem II.14, f AMAM - <M,M> is also a martingale
on [0,%]. So in view of (3.2.19)

[ an-1)yan - | v(y-1)Acde

= [ wn-Dan + [ vae - [ v(1-a0)ae - [ v?Acde

is a martingale on [0,*], zero at time zero. []

3.3. Two sample case: the test statistics of Gehan, Efron and Cox

We now introduce, as members of a whole class of test statistics the
three test statistics whose study will take up a major part of this work.
All are nonparametric in the sense that few assumptions have to be made in

order that they can be used to construct an approximate (i.e. asymptotically

valid) test for the null-hypothesis of interest; however only in special

cases can they be used to give a truly nonparametric test, in the sense

that their null-hypothesis distribution is known. We discuss this point
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further after the necessary notation has been introducea.

Again we specialize the model given after the examples in Section 3.1,
this time supposing that the n observations fall into two groups, in each
of which the distribution functions Fj are the same. Relabeling the obser-
578150
j = 1,...,ni; i = 1,2; where the distribution function Fij belonging to

vations, we now suppose that the available data consists of (§i

observation (i,j) satisfies Fij = Fi for each i and j. In Definitions

(3.1.1) to (3.1.5) we replace the index j everywhere with (i,j), and define

Gi = Gij and Ti = Tij' Assumption 3.1.1 is again supposed to hold, and the‘

1=F2.

Next we define for each of the two samples i = 1 and i = 2 processes

null-hypothesis HO we want to test is that F

N,, ¥;, M, J, and F. similarly to (3.2.2) to (3.2.6):

1 1
ny
(3.3.1) N, (t) = jzl Ny () = #{5: X;5 S t and aij =1}
nj
(3.3.2) Y, () = 321 350 = #{5: Xy 2 t}
ni t
(3.3.3) M, (t) = _Z M5 (8) = N (£) -J’ ¥, (s)dG, (s)
j=1 0
(3.3.4) 3, () = X{Yi(t)>0}
~ ANi(s)
(3.3.5) F.(t) =1 - 1T (1 -———-———).
+ s<t Yi(s)

Fi is now the product limit estimator for sample i.

By Assumption 3.1.1, M1 and M2 are square integrable zero mean

martingales, with

(3.3.6) <M M> = f ¥, (1-46,)d6;, i=1or2
and

(3.3.7) M, My> = 0;

Yl, Y2, Jl and J2 are predictable processes.

In motivating a certain class of test statistics we shall begin by

supposing that the alternative hypothesis of interest is H1:

dG1 dG2
w____ = > = - "
Em (t) = e (t) for u-almost all t € [O,TlATZJ

where y is any o-finite measure on [0,«) dominating both G1 and G2 (e.g.
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the sum of the measures generated by G1 and Gz) . So if F1 and F2 have.
densities with respect to Lebesgue measure, and hence the hazard rates

)\1 and )\2 exist, the alternative hypothesis reduces to
"A () 2 A,(t) for Lebesgue-almost all t € [0,11/\1'2]";

while if 1'-‘1 and F2 each assign mass 1 to the positive integers, it reduces
to

Al - - n
"Xy =t(x 2t) 2 P(X,=t[X,2t) for each t € Nn (1,7 A1,]

(here X1 and X2 are random variables with distribution functions F1 and

Fz). We call H1 the alternative of ordered hazards. By (3.2.9), if H1 is

true then for all t, Fl(t) 2 Fz(t); i.e. we have a strong form of the
commonly considered alternative of stochastic ordering.

Let K be a bounded nonnegative predictable process which is a function
of the observations and which satisfies Yl (t) A Y2(t) =0 = K(t) = 0; we denote
by K* the class of all such processes. (The class K is defined in the same
way, dropping the requirement that K be nonnegative.) We shall use X ¢ K+

as a random weight function with which estimates of 4G, - 4G, i.e.
dN;  dNy 1 2

Y, 7, are combined for those t for which estimation is possible, i.e.

for which ¥, (t) and Y2(t) arepositive. For given K ¢ K or K+, define

aN aN
(3.3.8) w=Jx—i-JK——-2-

Y ¥
and

K K
3.3.9 o I Y I S _
G2 e JYI ¥ Jyz My =W fK(dG1 &G,) by (3.3.3).

We now see by (2.2.1) that £z = 0 so that under H

0 EW(») = 0, while
under H, if K ¢ K, Ew(e) » q. Also,

by the assumptions on K, W(») is an
observable quantity. It seems reasonable to investigate whether
HO versus H1 can be based on W(w) .

There are now two Possibilities. Sometimes, a test can be carried out

using a permutation distribution of W(®) under HO. This would for instance

be the case (for sensible choices of K) in Example

forces of mortality for the Competing risks are identical for all animals,

or in Example 3.1.4 if the two samples arise by assigning one of two
treatments at random to each patient entering. However, unless the data
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comes from a well planned experiment, only rarely will this approach be
possible.

Alternatively, and this will be our approach, one could rely on large
sample results and suppose that under HO, W(») is approximately N(O,dz)
distributed for some 02 which will have to be estimated.

In view of (2.2.2), (3.3.6) and (3.3.7) we find that

2
K
J T( 1- AGi)dGi),

o~

(3.3.10)  Ez® = E(

i=1 i
where under H., Z2 = W.
Recalling that f —— can be considered as an estimator of G, (and
d(Nq+N3) i 1

under HO’ f —Was an estimator of G1 = G2), we propose as-alternative

estimators for o2, Vl(m) and V2(°°) , where V1 and V, are defined by

2
2 K2 ANi-l dNi
R I A (s
1 i 1

i=1

and

(3.3.12) v, =

J % K2 AN1+AN2— l\d(N1+N2)
Y
i=1

1 -
Y o+v,-1 ] Y +Y,

i
More explicitly, the suggested test procedure is to reject HO in favour of
Hy, if W(m)vl("")-15 .

(or alternatively W(°°)V2 () " ?) takes on too large a

value as compared with the standard normal distribution. By an abuse of
notation, we shall say that W(m)vﬁ(m)-li, 2 =1 or 2, is a test statistic
of the class K or K* according to whether K € K or K € k*. 1f x ¢ K" ana

T is a stopping time depending on the obs:rvations, then KX[O,T] € K+ too.
So for any such stopping time, W(T)VJL(T) is also a test statistic of the
class K+. In particular we can take T = t for any fixed t € [0,2]. Similar
statements hold for K ¢ K.

The —1's in numerator and denominator of the terms in (3.3.11) and
(3.3.12) standing fox AGi in (3.3.10) have been introduced for two reasons.
In the first place, if }:"1 and F2 are continuous these terms with probability
1 disappeaxr, making V1 and V2 simpler to calculate and also, as we shall see
presently, correspond more closely to the relevant quantities for the test
statistics of interest as they were originally proposed. Secondly, they make
V2(°°), and in some cases V1(°°) too, an unbiased estimator of the null

hypothesis variance of W(=), as the following proposition shows.
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PROPOSITION 3.3.1. Under By Evz(oo) = var(Ww(=)). If Y1(t) /\Yz(t) < 1=

= K(t) = 0, then EV1(°°) = var(z(=)) (= var(W(«)) under HO).

PROOF. By Proposition 3.2.2 and (2.2.1) applied to the martingale

[ (aN,-1)aN, - | Y. (Y,-1)AG.dG, and to the bounded predictable process
i i it7i i i

.-,
1 1

2 2 K2
S [ T e, P
1 izl Y? i Yi(Yi 1) "it7i i i
1
2 2
= Z J E(;—(l -Aci)dc;i) if ¥ (t) (Yi(t)—l) =0 = K(t)=0
i=1 i
= Ez° by (3.3.10).

This proves the statements on Vl. For Vz, we proceed similarly, applying
Proposition 3.2.2 with N = N1+N2, Y = Y1+5I2 and G = G1 = G2. However
since (Yl(t) =0 or Yz(t) = 0) = K(t) = 0, it now follows that

¥Y(t) (¥(t) -1)=0 = K(t) =0, so no additional condition has to be made. [

We now show that subject to some minor modifications, the test statis-
tics of GEHAN (1965), EFRON (1968) and COX (1972) are members of the class
K*. Define as in AALEN (1978)

(3.3.14)

~
]

Y. Y

G 172
(3.3.15) X = (1-F, )(1-F, )37,
Y., Y
172
(3.3.16) K, = ———
C oY +Y,

and the associated processes WG'ZG’VlG'VZG' etc. (see (3.3.8), (3.3.9),
(3.3.11) and (3.3.12)). Note that each of these K's is predictable, bounded
and nonnegative, and depends only on the observations (;(‘i.,Slj),

j = 1,...,ni; i =1,2. Then we find that WG(N) is the test statistic of
GEHAN (1965) defined below his formula (3.1) if we let his xi's correspond
to our second sample and his yj's correspond to our first sample. GEHAN

(1965) bases a permutation test on WG(w) in the following way. Let N, +N,=N

1 2
and Y1 +Y2 = Y and let 'I‘1 < .. < Tr be the different time instants at

which N jumps (so r is a random variable too). Put T0 =0and T b1 =%
r
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GEHAN calls the collection
(3.3.17) P = {x; (AN(Ti),Y(Ti)-Y(Ti+1) -AN(T)),  i= 0,.v.,r}

the pattern of the combined sample. Here, AN(Ti) is the number of uncen-
sored observations at Ti’ while Y(Ti)4—Y(Ti+1)-AN(Ti) is the number of
censored observations falling in the interval [Ti,Ti+1). GEHAN now supposes
that under Hy and conditional on P, the joint distribution of the 2(r+1) .
numbers of observations from the first sample in each of these categories
is the same as that obtained by selecting at random n, objects out of a
total of n1+n2, which are distributed over 2(r+l) cells according to the
numbers in P. For small samples the test can be based on the exact permuta-
tion distribution of WG(m) conditional on P. However for larger samples

GEHAN proposes a normal approximation based on the exact permutation expec—

tation and variance of WG(M); he shows that under the permutation hypothesis

(3.3.18)  E(W (=) |P) =0

and also calculates var(Wb(m)]P); we give it in a simpler form due to

MANTEL (1967), which we also rewrite in a form more suited to our notation:

(3.3.19) var (W (w)|P)= 172 /Im (Y-N)sz + Jw de(Y(O)— Y -N))
G (n1+n2)(n1+n2—1)\ 0 0 +

Dty «
R TR T rar— J Y (Y-AN)AN.
nyny)ing+n, 0

GEHAN's proof that, in a special case of Example 3.1.4, conditional on P and
under H, WG(“)/W is asymptotically standard normally distributed,
and his proof of consistency of the corresponding test versus alternatives
of stochastic ordering, require that F1 and F2 give mass 1 to a finite set
of points. However a more generally applicable proof can be based on a
theorem of WALD, WOLFOWITZ, NOETHER & HOEFFDING given in PURI & SEN (1971)
page 73, together with MANTEL's (1967) representation of WG(m) as a "linear
permutation test statistic"; see BETHLEHEM, DOES & GILL (1977).

BRESLOW (1970) considers WG(w) from a purely "large-sample” point of
view under the random censorship model (Example 3.1.4); i.e. without assum-
ing that under the null-hypothesis a permutation distribution is availabe.

He suggests estimating the null-hypothesis variance of WG(m) with
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™ o o -
(3.3.20) ] Y1Y2d(N1+N2)+;}—J Yl(n1~Y1)dN2+n—1—J v, (ay-¥p)an, .
0 1-°0 2°0
He assumes continuous Fl and Fz; in which case the first term of the above
estimator is almost surely equal to VZG (). The other two terms will general-
ly be asymptotically negligeable compared to the first.

EFRON (1967) proposed a test statistic W and sketched its large-sample
properties under the condition that there be no ties between the §ij's; he
too worked under the random censorship model. Letting his xi's correspond ‘

to our first sample, and his yj's to our second sample, W is defined by

(3.3.21) W= -J (1 ~f‘1(s—))J1(s)d((1 -f‘z(s))Jz(er)) -
se (0,%)

W can be considered as an estimator of P(xlzxz) , where X1 and x2 are
independent random variables with distribution functions F1 and F2' So
under HO' W should approximately equal .

Letting T, = max § and T = T,AT,, we see that
i 3 ij 172

(3.3.22) @ (1-F,(s-))3, (s)d(1 ~F,(s))

Jse (0,)

+ X{T2$T1}(1 —FI(T-)) (1 —F2(T-))

i

o an
- -~ 2 - -
Io (1-F, )(1-F, )3,3, 72—- + x{Tstl}(l - F (T=) (1 =Fy(T-))

by (3.2.7).

By integrating (3.3.21) by parts, and supposing there to be no ties amona
the ;i j's, we also find that

(3.3.23) wW=1+ J (1—152(3-))32(5)@((1-ﬁl(s))Jl(s;))
se(0,*)

and hence repeating the previous calculations and adding, we find

(3.3.24) 2W-1 = "WE(“) + (X{T2<T1} - X{T1<T2}) (1 -1:‘1 (T=)) (1 —£‘2(T—) ).

The last term here will be negligeable compared to the first one under the

conditions EFRON (1967) envisaged for his asymptotic results. However if

(3.3.24) is used to extend the definition of W to tied }? .'s, even if Fl
i

and F2 are continuous (as in Example 3.1.1) this last term can cause
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disastrous behaviour of W so it seems better to redefine W as % - %wE(m);
we shall only consider WE(W) in the sequel.

As an estimator of the asymptotic null-hypothesis variance of 2W-1,
EFRON (1967, formula 8.12 and later remarks) proposed the estimator (modulo
end effects similar to those in (3.3.24))

J»w (1-F0° = a-F,0°
e [ e
1
o Y o % 2

4 Ny 4 Wy

=J (1-F, ) ——+J (1-F, ) —,
1- 2 2- 2
0 ¥ 0 ¥,

where the second form suggests that this estimator will be close to ViE(w)

under the null hypothesis (when ﬁl and ﬁz will be close to one another) if

F1 and F2 are continuous. In the sequel we will however only consider v1

and V- Both the test statistics of GEHAN and EFRON simplify to the
Wilcoxon test when there is no censoring.

Finally we consider Wb(m). COX (1972) considers treating a certain
statistic U(O)//Tfay'as approximately standard normally distributed for

generating a two-sided test of Ho versus

ac 1 dG

du

- - -1 - - -
Hl. (1 AGl) - = c(1 AGZ)

an for some c # 1

where p, supposed to dominate G, and G2, is either Lebesgue measure or

1
counting measure. (In the first case AGi = 0 and we speak of a "proportional
hazards model"; in the second we have a “"proportional odds model".) It
turns out that calling COX's sample 0 and sample 1 our sample 2 and sample

1 respectively,
U(0) = W _(»)
C

1(0) = Vzc(m).

In various special cases, THOMAS (1969 and 1975), CROWLEY & THOMAS
(1975) and AALEN (1976) show that under Hy, U(0)//T(0) has asymptotically
a standard normal distribution.

Other authors, e.g. KALBFLEISCH & PRENTICE (1973) and BRESLOW (1974)
propose slight variations of I(0) for the case when ties are present.
However these are either proposals for dealing with originally continuous

data which later has been grouped (as in MANTEL's (1967) and BRESLOW's
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(1970) discussion of the effect of ties on GEHAN's (1965) test statistic),
or the authors have other alternative hypotheses in mind.

The test statistic of COX has also been derived by MANTEL (1966),
PETO (1972), PETO & PETO (1972) and THOMAS (1969) and is widely known as
the log rank test and as the (generalized) Savage test. If F‘1 and F2 are
continuous and Hi holds for an arbitrary o-finite measure dominating both
G, and G, then by (3.2.17), (1-F,) = (1-F,)°, a so-called Lehmann

alternative (SAVAGE (1956)).
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CHAPTER 4

ASYMPTOTIC RESULTS

4.1. Consistency of the product limit estimator and of test statistics

+
of the class K

In this section we apply the theorem of LENGLART (Theorem 2.4.2 above)
to obtain conditions for uniform consistency of the product limit estima-
tor. We also use it, in a two sample situation, to obtain conditions under
the alternative hypothesis for a test statistic of the class K+ to converge
in probability to infinity as the sample sizes tend to infinity. Since in
Section 4.3 we show that such a test statistic is asymptotically normally
distributed under the null hypothesis, this constitutes a demonstration of
consistency against the alternatives considered. The restriction from the
class K to the class K+ is related to our choice of alternative hypotheses,
all of which state in some sense that the observations in one sample are
smaller than those in the other. We specialize the results to a general
random censorship model (Example 4.1.1 below) and, as far as the test
statistics are concerned, to those of GEHAN, EFRON and COX.

First of all we collect the most important definitions and assumptions
used throughout Chapters 4 and 5. We suppose that for each n = 1,2,... the
model for n censored observations specified after the examples in Section
3.1 is given. In particular, we shall make continued use of Assumption
3.1.1 and, after this section, of Assumption 3.1.2 also. The underlying
probability space (and hence also the distribution functions concerned) may
be different for each n. We indicate dependence on n (of a distribution
function, for instance) by a superscript; however in most other cases this
dependence is suppressed in our notation (in particular, as far as stochas-
tic processes defined for each n are concerned). We introduce the notation
for an r-sample set-up. In future only the cases r = 1 and r = 2 will be
considered, and dealing with the case r = 1 we shall drop the index

i=1,...,r altogether.
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So r is fixed and for each n = 1,2,... a stochastic basis is given on

. on .

which random variables X?., X,. and 6?, are defined, j = 1,...,n,,
1] 1] ij i

i =1,...,r, where the number of observations in the i-th sample ni = ni(n)

N . X . :
satisfies Zi=1 n,=n. We suppose that the XI.:.'s are independent, X;._lj having

~n
(sub)-distribution function F?, and ;?, and sz satisfying 0 < xij < o,
~n

n n
X,, £ X, . and L = XY . i=1,... and for each
i5 15 an Sij X{X§.=X9.} almost surely. For i ' /T

n we define stochastic égocé;ses by

_ .. on n _
(4.1.1) N, (£) = #{3: xij < t and Gij 1}

.. 3n
#{3: xij >t}

L}

(4.1.2) Yi(t)

(4.1.3) M, (t)

t
N, (t) -J Yi(s)dsril(s)

1 1 0
(4.1.4) 3, (%) = Xy, (£)>0}
ANi(s)
(4.1.5) F.(t) =1 - 1T (1-———).
+ s<t Yi(S)

The function G; in (4.1.3) is defined by G; = J (1-F; ) “ldF‘i‘. We also
define T? = sup{t: F?(t) < 1}, ﬁi is the product limit estimator of Fz
based on the observations iz., ng in the i-th sample.

By Assumption 3.1.1, for each i =1,...,r, Mi is a zero mean square

integrable martingale with
n n
(4.1.6) M M> = f ¥, (1-4G;)d6;
(4.1.7) <Mi’M >=0 i#ir.

All the processes defined by (4.1.1) to (4.1.5) are adapted; Yi and Ji are
predictable.

By Assumption 3.1.2 (not used in this section), for each t, condition-
al on Ft—' for each 1 = 1,...,r, ANi(t) has a binomial distribution with
parameters Yi(t) and AGi(t). Also, the ANi(t)'s are conditionally indepen-—
dent given Ft—'

We shall be particularly interested in the following special case,

which includes Examples 3.1.1, 3.1.3 and 3.1.4.
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EXAMPLE 4.1.1 "“General random censorship model".

For each n=1,2,... X?j and U;j' j = 1,...,ni, i=1,...,r are 2n indepen-
dent positive random variables, ij or U?j almost surely finite for each
i, j and n. ij has (sub)-distribution function F? and Uij has (sub)-
distribution function sz. The observable random variables g?j and dgj are
~n n n n
X,. = AU, 8. = .
defined by ij xij ij" Tij X{ngﬁugj} n
If (sub)-distribution functions L1 and L2 exist such that Lij = Li for
all i and n, we speak of the (usual) random censorship model.
n n .
fL, = for some u,, € (0,2], we speak of the model of fixed
TRy T Xy i3 € (Ordr we spe
censorship.

We now consider the product limit estimator, setting r = 1 and drop-
ping the index i everywhere. By (3.2.13), if t and n satisfy Fn(t) <1, we
have on the event {Y(t) >0}

- a -
(4.1.8) F'Fn=J1 —F;%GM on [0,t].
1 -PF 1 -F
Define
(4.1.9) H = a -F)J
(1 - FYy
and
(4.1.10) 2z = [ HAM.

Again, if t and n satisfy F'(t) <1, H is a bounded predictable process
and M a square integrable martingale on [0,t]. So by (4.1.10) and the

theory of stochastic integrals, Z2 - <Z,Z> is a martingale on [0,t],

where
(4.1.11)  <z,2> = J B2 a<,M>
1-7)% n, .n
= J A T=l0(1 - 46T 6T ((4.1.6) and (4.1.9))
(1-H“y

is a predictable, nondecreasing, right-continuous process, zero at time
zero. By the martingale property and Doob's optional sampling theorem, for

all stopping times T < t
E@(m?) = E(<z,2>(M).

We now see that Theorem 2.4.2 is applicable with Z2 in the place of X and
<Z,2Z> in the place of Y. The following theorem then becomes straightforward



56

to prove:

THEOREM 4.1.1 (Consistency of the empirical cumulative hazard function and
of the product limit estimator).

Let t € (0,~] be such that

(4.1.12) Y(t) +P°° as n + «©

and

(4.1.13)  lim sup F (t-) < 1.

n--e

Then

(4.1.14) sup |F(s)-F"(s) | p 0 asn>e
sel0,t]

and

S an n

(4.1.15) sup J 3 - ¢ (s) +PO as n » ®,

sel0,t] 70

If u € (0,*] is such that (4.1.12) and (4.1.13) hold for all t < u, and if

furthermore

(4.1.16)  lim lim sup (F"(w) -F7(£)) = 0
tiu n->o

then (4.1.14) holds with the interval [0,t] replaced with fo,ul.

PROOF. Letting t be fixed and satisfy (4.1.12) and (4.1.13) we see that

~ n
P(F-F = 7 on [O,t]) > 1 as n > «,
1-fF"

and also

lim inf  inf (1-F'(s)) > O.
n+  sel0,t)
So to show first that sefgpt) IF(s) —Fn(s)l e 0 it suffices to show that
I
ﬁblpt) (Z(s)z) —>P 0. Now by Theorem 2.4.2 applied to the time interval fo,t),
sel0,

p( sup z()22e) <D+ P(<z,2(t0) > ) <
S€[01t)

@™

<

(L P

n
+ p( i (t')z > n) (by (4.1.11)).
(1-F" (t=)) Y (v)

By (4.1.12) and (4.1.13), the second term on the right hand side converges
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to zero as n + = for each n > 0. Since € and n are arbitrary, we have now
shown that

sup IF(s) ~F™(s) | * 0 asn->e.
sel0,t)

By (3.2.7) and (3.2.8), on {Y(t) >0},

AF (£) - AFT(£) = (1—15(t-))%-— (1-F"(t=))3 (£) AG(t) .

So to complete the proof of the first part of the theorem concerning the
product limit estimator, we must show that AN(t)/Y(t)-J(t)AGn(t) *f 0 as
n + ., Now since f aN/y - I Jagt = f YnldM is also a square integrable
martingale on [0,t] with <IY_1dM,IY-1dM> = f(J/Y)(l-—AGn)dGn, applying
Theorem 2.4.2 on the interval [0,t] shows that

s s
P( sup J %?—— I Jag"| = e) -+ 0
se[0,t] 0 0

as n > » for all € > 0. So this completes the proof that (4.1.14) holds,

and also establishes (4.1.15). The rest of the proof is a straightforward

monotonicity argument. [

In the situation of Example 4.1.1, we see that

n
Ev(t) = (1-F (t-)) ) (1-L0(e-))
j=1 ’
and

n
var Y(t) = (1-F'(t-)) | {(1-L;‘<t—))(1- <1-F“(t—)>(1—L’j’(t—))>}
j=1

< EY(t).

So in this case, and in the presence of Condition (4.1.13), (4.1.12) is

equivalent to

n
(4.1.17) lim inf ) (1-L0(t-)) = =.
e j=1 J
PETERSON (1977), WINTER, FOLDES & REJTG'(1978), FOLDES, REJTC & WINTER
(1980), and FOLDES & REJTO (1980a) and (1980b) give consistency results
under various special cases of Example 4.1.1, under conditions always imply-

ing (4.1.13) and (4.1.17). The results of FOLDES et al. are on strong uniform



58

consistency and include information on rates of convergence - AALEN & JOHANSEN
(1978) Theorem 4.5 give the first part of our Theorem 4.1.1 in the case

that F" is independent of n, is continuous, and possesses a hazard rate;
otherwise their result is more general as it is concerned with nonparametric
estimation of the transition probabilities of a Markov chain.

Actually Theorem 4.1.1 often implicitly gives conditions for uniform
consistency of the product limit estimator on the whole real line. Foi in-
stance, suppose the underlying distribution functions F» are fixed, F =F
for all n. As usual, define T = sup{t: F(t) < 1}. Now (4.1.13) automatical-
1y holds for all t < T, while if F(t-) = F(1) then (4.1.16) holds. So if
(4.1.12) holds with t = T in the first case, or for all t < T in the second
case, uniform consistency is proved on [0,t], which is equivalent to uni-~
form consistency on [0,®). In this case Theorem 4.1.1 implies consistency
of the natural estimator Ig(l—f‘)ds of mean lifetime fg(l—F)ds. The only
difficulty occurs when T = ®; but this can be solved, assuming the mean
lifetime itself is finite, by using (3.2.22) to bound the tail of the
integral by a small finite quantity.

Now we turn to the two-sample tests of the class K+ of Section 3.3. So
in (4.1.1) to (4.1.5), we take r = 2. For each n = n +n,, K € K is a bounded

1
predictable process, which is a function of the observations and which is
+
zero where ‘11/\':(2 is zero. If K is nonnegative then we say K € K . For con-
venience we repeat some of the definitions of stochastic processes of

Section 3.3 (each defined for each n):

an an
(4.1.18) w=Jx—i—Ix——2-

K K n n
4.1.19 7 = J —_ - — = - -
( ) c]M1 J 7 dd2 W J K(c}G1 dG2)

Y
2,2

(4.1.20) v = ] ]——(1 )1
i=1 Y

K { AN1+AN -1 o
2X ¥+, 1Ny -

it

(4.1.21)

<
Mo
H
oy

We suppose throughout that n1m2 > ®as n -+ », A test of the null hypothesis

HO: Fl = Fz is based on comparing W(w)/ﬁl(w or w(m)/u/v () with the
standard normal distribution.

These test statistics are called test statis-—
tics of the class K or K*

¢+ according to whether K is a member of K or K.
We consider a sequence of one-sided alternative hypotheses and assume that

large positive values of the test statistics lead to rejection of HO.
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Throughout the rest of the section we suppose that F? and Fg do not depend

. n
on n, defining F1 = F, and F, = Fn for all n.

1 ) 5 We define Ti and Gi’ i=1,2,
in the usual way. Alternative hypotheses of interest are:
ébl dG2
le ?57-2 zﬂr-on [O,TIATZJ (where | is a o-finite measure dominating

G1 and GZ)' and F1 # F2'

o
@
\%

5 Gy G, on [0,»), and F, # F,.

m
)
\'2

5+ Fy 2 F, on [0,=), and P, # Fy-
These three types of alternative hypothesis can be called ordered hazards,
ordered cumulative hazards, and stochastic ordering respectively. H1 implies

H2 and H3, while if Fl and F2 are continuous, H2 and H3 are equivalent. The

one-sided form of the alternative Hi given on page 51 is a special case of
Hl.
Finally we repeat the definitions of the three test statistics of

particular interest, adding standardizing factors depending on n, and n

1 2
only, which loosely speaking keep the variance of W(«) bounded away from O

and ® as n > ®:

n.n, Y, Y
(4.1.22) ¥ = —1;-3— 12
Nty By Ny
4y -
(4.1.23) = —— (1-F )(1-F, )33
Xg n,+n, 1- 2-19192
(@.1.20) c - nln2 33.32.n1+n2
e c n,+n, n Y, +Y,

177271 72 "1 72

All are members of K.

The following trivial lemma (we omit the proof) splits the proof of

consistency into four parts:

LEMMA 4.1.1. A one-sided test based on W(w)/VVE(w) (2 =1 or 2) is con-

sistent against some fixed alternative hypothesis if, under that hypothesis,
(4.1.25) Z(») is bounded in probability as n +> «

(4.1.26) Vl(w) is bounded in probability as n + «

(4.1.27) Vl(w) is bounded away from zero in probability as n + «

(4.1.28) K(4G,-dG,) +_ +» as n + o,
0 1 2 P
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Conditions (4.1.25) to (4.1.27), which are true under very weak
regularity conditions, are dealt with in the following sequence of lemmas.
In the presence of these conditions, (4.1.28) is a necessary and sufficient
condition for consistency. Establishing reasonable conditions for (4.1.28)
itself will be a trivial enough matter under the alternative hypothesis
Hl’ but gives a little more trouble under H2 and H3.

2
o K o K . A
LEMMA 4.1.2. Suppose JO Yi— c]G1 and 'fO Y-z- dG2 are bounded in probability as
n > o, Then (4.1.25) and (4.1.26) with £ = 1 hold. If on the other hand
fm pl 4dG,, and fw bl 4G, are bounded in probability as n -+ «, then (4.1.26)
0vY, 2 0%, 1
holds with & = 2.

PROOF'. Using (4.1.6), (4.1.7) and the theory of stochastic integrals, we

see that the following three processes are all zero-mean martingales on

[0,]:

2
2 K
Z —Z T (1-86,)d6;
1 1
2 2
K K
D San -1 [ E e
i Y, i i
1
and
2 2 2
X[YKY dNi—(J-I;—-dG1+IE—dG2).
i 172 2 1
Note that
2
K
0 < 1SZJ7dNi
i Y
1
and that
2
K
OSVZSZJ———YY an, .
i 172

We now apply Theorem 2.4.2 by using the martingale property of each of the
above three processes, to prove (4.1.25) and (4.1.26) with 2 = 1 and 2 = 2
in turn.

’I'oZProve the first set of assertions we make use of the fact that
zi f: % dGi is bounded in probability as n - «, By the martingale property,
for every stopping time T

T 2 T 2
E2(m? = E(Z J = (1—AGi)dGi> < E(Z J = dGi).

i°0 i i’0 71
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K2 '
Ei I o dGi is a predictable process. So by Theorem 2.4.2, choosing T =
i
in (2.4.10),

® 2

2 n K
P(Z(x)° = C) sE+P(ZJ ?._dGi>“)

i "0 71

for any C > 0 and n > 0, because Z(«) = lim Z2(t). Since n and C are
~3-C0

arbitrary, under the hypothesis of the lemma (4.1.25) follows directly.

The other two cases are proved in exactly the same way. [

LEMMA 4.1.3. Suppose that there exists a t € R+ such that for i = 1 or 2,

0<Fi(t) < 1

Yi(t) +P°° as n >
and
K2
inf T is bounded away from zero in probability
[o,t] 7i

as n > o,
Then (4.1.27) holds with & = 1.

PROOF. The conditions of the lemma imply that [Su%] AGi < 1 and that
’
Gi(t) < o, By Theorem 4.1.1, we have

s dNi
sup J T—Gi(s) —>PO as n > ®
se[0,t] |70 i
and hence also
ANi(s)
sup — = AG, (s) ->P0 as n > ®,
sefo,t] | %1 (® *
Since
t 2 AN, Y, an,
K i i i
s [ - ) B
1 0 Yi Yi Yi 1 Yi
s e (K2) (1 sop (ANl) Yi(t) )Jvt dNi
in Frand B - hrra i ey ;
Y, Y. (t) -1 Y.
[o,t] ‘%1 [o,e1 V% / ¥(® o %

the theorem is proved. [
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. +
LEMMA 4.1.4. Suppose that for i = 1 or 2 there exists t € R such that
0 < Fi(t)
Fl(t) < 1 and Fz(t) <1

Ylit) -)P =« and Yz(t) _*P ® as n > ®
and Kz(s)Yi(s)
inf —————— is bounded away from zero in probability
Y (s)Yz(s)

sel0,t] 71 as n -+ w.

Then (4.1.27) holds with & = 2.
PROOF. The proof is similar to that of Lemma 4.1.3 after writing

1 - — e O
0Y1Y2 Yl Y1+Y2-1 Y2 Y1+Y2—1 Yi

t K'Y, AN Y ANZ Y AN,
V() 2 J )

We now turn to the more important part of Lemma 4.1.1, namely Condi-
tion (4.1.28).

LEMMA 4.1.5. Suppose K ¢ K+. Under Hl' if some t € IR+ satisfies both
Gl(t) > Gz(t) and the conditions of Lemma 4.1.3, then (4.1.28) holds.
PROOF . Yi(t) ->P ©» as n -+ «® implies that _inf_ Y, »_ «® as n »* « and so

[o,t1 1 P

[%nf;] K *p ©asn e, The rest of the proof is now straightforward. [
’

Before considering the alternative hypotheses H2 and H3, we illustrate
the previous lemmas by specializing in the following theorem to the test
statistics of GEHAN, EFRON and COX. The result is by no means the strongest
possible; rather, we have concentrated on making the conditions simple. In
particular, the conditions can be weakened if one is only interested in a

consistency result with the variance estimator V1 () .

THEOREM 4.1.2 (Consistency against ordered hazards) .

Consider a fixed alternative in H, . Suppose that there exists t > 0 such
that Gl(t) > Gz(t) and such that for both i = 1 and 2, 0 < Fi(t) < 1 and
Yi(t)/ni is bounded away from zero in probability as n + «. Then

WG(N)/VGGR(“’) 7p t®asn~+®, L =1 and 2. Under the additional condition

n,

(4.1.29) lim inf e >0, i=1 and 2,

nHe 172
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W(W)/V °°)+ +® as n - ®,

2 = 1 and 2. Alternatively, under the addi-
t.wnal condltlon that Yi (T) /ni is bounded away from zero in probability as

n—+o for i = 1 and 2, where T = inf{s: Yl(s)AYz(s) =0}, WE(w)/val(w) p
asn-—>«, £ =1 and 2.

PROOF . For checking the conditions of Lemma 4.1.2 note that

2 2 Y.4G,
JE—&;.=n.J§-—l +
i i

Y vy

and

where

{52 o[ 2 e

1 1

So it suffices to check that
n.K2 n.K2
i
sup and suf
rt ¥°

; 1%,
i

are bounded in probability as n + « for each i = 1,2 and ‘for each of the
three test statistics. For the test statistic of GEHAN, this follows from

the relationships

n K2 n Y 2
1"G 2 2
sup 2 < sup n,+n,\n,, =1
r* ¥ R T2\
and
2
K n
sup n =361 L 12 <1
—_— = —_ L s
=+ 1 Y1Y2 RY By, 00,

and those obtained by interchanging the induces 1 and 1. For the test sta-

tistic of COX we have similarly

2 2
sup n EC_ < cu ( Yz ) n1+n2 < n1+n2
e N )
and !
2
KC P( Yl )( Y2 ) n1+n2 < n1+n2
sup n, —— .
e 1 Y1Y2 1R+ Y Y, \Y +Y, n, n,
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Finally for the test statistic of EFRON we have

! 2
sup n, — S (————)
wF 1 Y? ¥y (T) n1+r12

2
sup n KE < ! 72 o
®F LYY, 0 Y (T) Y (T) nyn,

The conditions of Lemmas 4.1.3, 4.1.4 and 4.1.5 are satisfied with the t

given by the theorem. Note first that KG' Kc and KE: are nonincreasing and

nonnegative. For such a K,

2 2
inf %—- > K(nt)
[o,t] "i i

For each test statistic, it is easy to see that if for i = 1 or 2

lixg_minnf nrtn > 0, then for i'#i, X(t) 2/ni, is bounded away from zero in
probability as n + », and so the result is proved in this case. Otherwise,
from any subsequence of n's we can extract a further subsequence along
which lim inf -rl—l% > 0 for i = 1 oxr 2, and so along this sub-sequence
w('=‘=)/ﬁl-;;TaT *p ®. But by a well known result (see e.g. BILLINGSLEY (1968)

Theorem 2.3), this implies that W(m)//vl (®) >, @ as n > . ad

For consistency against more general alternatives we shall have to
take more trouble in proving (4.1.28). The next two lemmas will take the
place of Lemma 4.1.5 for the alternatives H2 and H3. Recall that we have
assumed that nll\n2 > ® as n > ®,

LEMMA 4.1.6. Define 1 = T, and let k be a function on [0,%), zero on
(t,°), such that f; lkldGi <o, i =1 and 2, and such that

00
(4.1.30) rdez < J del'
0 0
/ni+
Suppose also that 1772

e K converges uniformly on [0,t] to k in probabil-

ity as n » « for each t < t, and that for each i = 1,2, either G, (T) < =
i

and the uniform convergence holds also for t = 1, or both
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n,+n
172
lim lim sup P( J

[x(s) [ac, (s) < s) =0
ttT n-—>o

se(t, 1]
and
k(T)AGi(T) = 0.
Then
J K(dGl-—dGz) *P +o as n - o,
0
njnp

ni+n
(t1,°) almost surely. So it suffices to show that as n + =

PROOF . Note that as n - «, + o, Note also that for each n, K = 0 on

ny+n, (T T
e J K dGi ”p J k dGi' i =1 and 2.
172 -0 0

/ni+ny
Now by the uniform convergence of K,

n1+n2 t t
oo J K dGi +P J k dG,, i 1 and 2, for each t < 1,
172 -0 0]

and also for t = 1t if G, (1) < «» and the uniform convergence holds on [0,T].
In the other case fg dei +—f5 dei as t + 1, and we can see directly or
apply BILLINGSLEY (1968) Theorem 4.2 to obtain the required result. [J

REMARK 4.1.1. Note the precise meaning of uniform convergence on [0,t] of

/M1
the process 1712 K to the function k in probability as n =+ «; this is

nin2
n,+n
sup K(s) - k(s)| »_ O as n > o,
sel0,t] nny F

LEMMA 4.1.7. Let k be a nonnegative function such that fg dei <o, i=1
and 2.
(i) Under H2, if k is left continuous and nonincreasing, and such that

IB dk, < 0, where B is the set on which G, > G,, then (4.1.30) holds.

1
(ii) Under H3, 1f there exists a left continuous nonincreasing function g

such that

and such that IB dg+ < 0 when B is the set on which F1 > F2, then
(4.1.30) holds.
(In each case, without the condition involving B it still holds that

L] (-]
jo kdG, < [ kdG,.)
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PROOF. (i) Writing fde = k6, - G dk, (note that G; (0) = Q) we see
that k. (t)G (t) tends to a flnlte limit as t -+ «, and that f G dk,

finite. So

]

lim k (t)G (€) - lz.m k, (t)G (t)

k (4G, - aG,)
Jo 1 2 oo
r (G -G, )ak,

[\
—
o
@
!
9]
~
&

-1 -] k
(ii) J kdG, = J T &, .
0 i 0 1 ~-F i

So f; k(dG, ~dG,) 2 f; g(aF -dF,) > O by the same arguments used to prove (i).[

Combining the conditions of Theorem 4.1.2 with those of Lemmas 4.1.6
and 4.1.7 gives consistency results for the test statistics of COX, GEHAN

and EFRON against alternatives H
/‘FT'F!Tz'

ninz
without uniform convergence of Sfl/n1 and Y2/n2 to functions ¥y and ¥, say-

2 and H3. In the first two cases, uniform

K to a function k as n > » is difficult to imagine

convergence of

Note that such functions yi are necessarily nonincreasing, nonnegative,
left continuous and even such that yi/ (1- Fi_) is nonincreasing. For
Yi/(1~§i_) is nonincreasing (see the remarks following Definition (3.2.6)),

so for s < t

Yi(t) S1-—1"i(t--) . 1—Fi(t—)
Y, (s) 1-F (s-) P 1-F, (s-) !

if yi(t) > 0,

by Theorem 4.1.1. This makes the following theorem easy to prove:

THEOREM 4.1.3 (Consistency of the test statistics of GEHAN and COX against
ordered cumulative hazards or stochastic ordering).

Consider a fixed alternative in H, or H,. Suppose functions Yy and ¥, exist
such that Yi/ni converges uniformly on [0,*) to ¥y in probability as

n-=+», i=1,2,

Suppose a t > O exists such that for i = 1 and 2, 0 < Fi(t) < 1 and

yi(t) > 0. Then ¥y and v, satisfy
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fev]
(4.1.31) Jo y1y2(dG1-dG2) 20
and

© Y,Y
142
(4.1.32) I —————(dG,dG,) 2 0 (0 <p, <1, p,+p, = 1)
0 PrYtey, 1 1 172
hold. If (4.1.31) is strict, then q;(w)/vwcg(m) »p *® asn >« L =1 and
. . s ni .o . .
2, while if llg+énf EIIEE >Ji, i= 1 and 2, and (4.1.32) is strict for all
limit points (py,p,) of (m n1+n Tang) ¢ then W, (m)// o (®) >, += as

n-+® & =1and 2.

PROOF . Under the conditions of this theorem, all the conditions of Theorem
4.1.2 hold, with the single exception of the condition Gl(t) > G2(t) for the
right t. However this condition was only needed to make Lemma 4.1.5 applic-
able, with which we proved (4.1.28). So it only remains to prove (4.1.28),
for which we shall use Lemmas 4.1.6 and 4.1.7. Defining k =YY, and

Y1Y¥2

= ———, we see that k_, and k., are nonnegative, left continuous and
C P1Y1HP oYy G C

nonincreasing (by the remarks preceding the Theorem). Alsoc we see that

I3 %36, sj‘”yaG sf'” (1-F, )d6, 51andthatj'°° k.46, S o] f;de <
< pi} (1 # 1i'). So (4.1.31) and (4. 1 32) hold under H2 by the last line of

Lemma 4.1.7.
For H3, note that kG(l--Fi_)_1 is nonincreasing and left continuous,
~1
- > -
and that kG(l Fl—) 2 kG(l

these functions in applying the second part of Lemma 4.1.7 to kG. Similarly

F2_)-1, so we can choose g to be either of

we have under H3

-1 RN
(1-F 1 )(01Y2 + Py, ))

( -1
(e
OF

OF

(1—

S N
21{p +p
1 2y, )
1-F,\7!
2(p +p
1 2 ¥y
-1 k
-1 -1 _ C
—((1-5'2_)(¢>1y2 +02y1)) = a-r,

where the central expression in the chain is a left continuous nonincreasing
function. .1, .1, .
ction. So (4.1.31) and (4.1.32) also hold under H3 cYeT
It remains to verify the conditions on the convergence of Vv ——— K in

n1+n2n1n2
Lemma 4.1.6. For the test statistic of GEHAN we have that —— K con-
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verges uniformly on [0,») to kG in probability as n * *®. If for i =1 or 2,

Yi(s)dGi(s)
E(j -
se(t,1] i

E/Ni('l') - Ni(t))

Gi(r) = », then kG('r)AGi(T) = 0 and

n,+n
E( nanJ
172 “se(t,t]

A

Kq (s)dGi (s))

Pl R—————————

i

A

Fi('r) —Fi(t) > 0 at t 4 T

uniformly in n. So the conditions of Lemma 4.1.6 are satisfied for K = K..

G
ni
For the test statistic of COX, suppose first that Bi¥ng MLFRC (0,1)
; nq+n )
as n + «, Then we certainly have that 31-5-2-2— Kc converges uniformly on
[0,ul] to k. in probability as n - = for each u such that yi(u) > 0,
¢ nyFny ¥ (ng+np)nj Pyt
i=1,2. Since ¥ ——— K < ————and k< vy, , it is easy to see
nyny, °C n, n,n C ipe,0p,

that the convergence can be extended to [0,«).

If for i =1 or 2, Gi('r) = «, then KC(T)AGi(t) = 0 and

n,+n
E( 177

K (s)dG.(s))
) Jse(t,r] ¢ *

< a o )+0 at t + T
12

(nl+n2)ni E(J Yi(s)dGi(s)
se(t,1] i

n

i

uniformly in n; which completes the proof of the theorem when ni+n con-

verges as n =+ @, Otherwise, for any subsequence we can extract a further
. . i .

subsequence along which lim nitng - pi for some Py € (0,1) . For this sub
subsequence we have WC(°°)/VVC£(°°5 ¥p *°i and so the result holds in

general. [

We now prove a similar result for the test statistic of EFRON:

THEOREM 4.1.4 (Consistency of the test statistic of EFRON against ordered
cumulative hazards or stochastic ordering).

Consider a fixed alternative in H2 or Hi. Define T = inf{s: YI(S)AYZ(S) =0}
and suppose that Yi (T) /n.l is bounded away from zero in probability as n =+ ®
for i = 1 and 2. Suppose there exists t > 0 such that P(T2t) - 1 as n + ®
and such that 0 < Fi(t) <1, i=1 and 2, and suppose there exists a set B
such that P(TeB) - 1 as n + » and
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s s
inf (J (1-F, )dF, - J (1—F1_)dF2> >0
s€B 0 0

(the function | (1-F, )dF, - ] «a -F,_)dF, is automatically nonnegative).
Then WE(M)/VGER(w) Yp t®asn>=, L =1 and 2.

PROOF. As in the proof of Theorem 4.1.3, we only have to supply a proof of
(4.1.28). Now

¥, (T) . #{3: X5 5 2 T}
n, =~ n, ;
1 1

So by the Glivenko-Cantelli theorem, for each € > 0

Y. (T)
P( < 1-—F.(T—)+-e) > 1 as n -+ o,
n, i

By the hypothesis of the Theorem, Fi(T—) is bounded away from 1 in
probability as n > «, i = 1 and 2. Now because T is a stopping time it is
possible to repeat the proof of the first part of Theorem 4.1.1 with t
replaced everywhere with T (in particular, in (4.1.12), (4.1.13) and
(4.1.14)). so

n,+n

nln2 KE - a-r
172

1) (1=Fp 0943,

converges uniformly on [0,®) in probability to zero as n - «. Because Fi(T—)
is bounded away from 1 in probability as n + =, Gi(T) is bounded away from

®, and so

n1+n2 T

ac —dG)—J (1-F, )(1-F, ) (dG,-dG,)
nlnzfzﬁ 1796, o 1- 2-) (464G,

converges in probability to zero as n + «. But (4.1.28) follows now imme-

diately because
J (1- Fl_)(l-—Fz_)(dGI—dGZ) = J (1--F2_)dF1 - J (1-F1_)dF2.

It can be seen that this function is nonnegative under H2 or H3 by applying
Lemma 4.1.7. [

We conclude this section with some remarks on Theorems 4.1.2 to 4.1.4.
Note first of all that for the test statistic of COX we made the assumption

nj
th i
at li%")mlnf ni+ny

> 0 for i = 1 and 2. This assumption can certainly be
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dropped in many situations but only at the cost of a far more complicated
proof; we shall go into this matter more deeply when proving asymptotic
normality in Section 4.3, when the same problem arises.

For the test statistic of EFRON we imposed the rather strong condition
that Yi (T)/ni is bounded away from zero in probability as n =+ «, where
T = inf{s: Y1(S)AY2(S) =0}. However, as we shall see in the next section
and as EFRON (1967) remarked, his test statistic will often fail to be
asymptotically normally distributed, unless one is prepared to use not
WE(w) but WE(t) as a test statistic, where t is such that for i = 1 and 2
Yi(t)/ni converges in probability to a positive quantity as n = . So our
condition is not restrictive at all if one follows this advice; t can even
be replaced with a stopping time. Note also that by Theorem 4.1.4 his test

statistic seems particularly suited to testing HO against the alternative
hypothesis

H4: P(X15X2A t) 2 P(xzsxl At) for all t,

where X1 and X2 are independently distributed with distribution functions
15'1 # F2. If Fl and F2 are continuous, H4 is equivalent to P(XlAtsszt) >

2 P(XzAtsxlAt) for all t. As we saw (Lemma 4.1.7), H4 is implied by both

H2 and H3.

In Example 4.1.1, a sufficient condition for convergence of Yi/ni is
n,
1 S
(4.1.33) = § L] (t) > L.(t) uniformly in t € [0,=)
n, 321 ij i

as n + ® for some (sub)-distribution functions Li' i =1 and 2. This can be
shown by applying the Glivenko-Cantelli theorem for independent but not
necessarily identically distributed random variables of VAN ZUIJLEN (1978)
(see his Theorem 2.1, Remark 2.1 and Corollary 3.1). In this case,
y, = (1 —Fi_) (1 —Li__) .

Note that in Example 4.1.1,

n,
1
var (v, (£)) S EY (t) = (1-F, (&) jZ1 (1—L’i‘j<t—))
and
oy
_ - _ n
EY, (t4) = (1 F, (£) 321 (1 SNOIE

So in this case the condition in Theorem 4.1.4 involving Yi (T)/ni could be
replaced with the following one:
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“There exists t > 0 such that F (t~) < 1, i =1 and 2, such that
for each n and fog i =1or 2, (1-F (t)) z o, -L ij(t)) = 0, and such
ji1 (1-L (t‘)) > 0, i= 1 and 2."

under this condition P(T=t) + 1 as n + ©,

P 1
that 1lga&nf n; z

Results on Example 3.1.2 and similar cases can be easily obtained by
adapting the approach used above as follows. Let K, Yi’ Ni’ etc. be the
usual processes which correspond to the experiment described in Example
3.1.2 when the experiment is not terminated at some predetermined failure,
but allowed to continue indefinitely. Then the test statistic corresponding
to the stopped experiment is W(T)/fV;FF + £ =1or 2, where T is some stop-
ping time. Equivalently, stopping the experiment corresponds to replacing
K with K.XEO,T]' which is also a predictable process having all the usual
properties if T is a stopping time depending on observable quantities.

)
nqm, XS

converges uniformly on [0,=) to the function f de in probablllty as

Now the conditions of Lemma 4.1.6 in fact ensure that

n > ®», for each i = 1,2, so we can conclude that

T
(4.1.34) J K(dGl—-dGz) > o

0 P
as n + », if there exists a set B such that P(TeB) ~ 1 as n + « and
inf (f k(dGl-—dGz)) > 0. But (4.1.34) is exactly (4.1.28) if K is replaced
B
with KX[O T in the latter. Again (4.1.25) to (4.1.27) with Z(«) and Vl(m)
14
replaced with Z(T) and VQ(T) will hold under very weak regularity condi-

tions.

4.2. Weak convergence: general theorem and the product limit estimator

This section contains a general weak convergence theorem. As an appli-
cation we prove weak convergence of the product limit estimator and use
the result to construct confidence bands for an unknown distribution func-
tion F. In Section 4.3 we shall apply the general theorem in the two-sample
case, to derive conditions under the null hypothesis for a test statistic of
the class K to be asymptotically normally distributed. Our general theorem,
Theorem 4.2.1, is an adaptation of Theorem 2.4.1 to the situation described
at the beginning of Section 4.1: a sequence (as n = 1,2,...) of r-sample

r . ~n .n .
set-ups with a total of n = Zi=1 n, observations (xij'aij)' j= 1,....ni:
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i=1,...,r. The notation here will be exactly as in Section 4.1, so that
in particular dependence on n will be suppressed, except as far as the
underlying distribution functions F? and the associated functions

= f (1 _Fi— ! dFI; are concerned (we allow F? to depend on n so as to
be able to deal with a contiguous sequence of alternative hypotheses in our

discussion of efficiencies in Chapter 5).
Theorem 4.2.1 gives conditions for joint weak convergence of processes

Zi = fﬂim i where for each n, Mi is the square integrable martingale defin-

ed by (4.1.3), and Hi is a bounded predictable process. So for the product
limit estimator (Theorem 4.2.2), Hi will be defined by (4.1.9) (where the

index i has been dropped because r = 1), and for two-sample tests of the

class K (Corollaries 4.3.1 and 4.3.2) Hi is defined to be K/Yi (see (4.1.19)

for the general case, and (4.1.22) to (4.1.24) for the special case of the
test statistics of GEHAN, EFRON and COX). Corollaries 4.3.1 and 4.3.2 are
in fact little more than this substitution of K/Yi for Hi in the conditions
of Theorem 4.2.1. Bowever in Propositions 4.3.1 to 4.3.3 we verify these
conditions in a very general situation for the test statistics of GEHAN, COX
and EFRON. We close Section 4.3 with a discussion of these results.

We take as given the situation specified at the beginning of Section
4.1, so that in particular Assumptions 3.1.1 and 3.1.2 hold. Let us start

by stating a list of conditions. Here, I is the interval [0,u) or [0,ul
for some fixed u € (0,«], F
Gi = f (1-Fi—)~1 dFi, i=1,...,x. For each i, hi is a nonnegative function
finite on I and zero outside I.

is some fixed (sub)-distribution function and

I. For each i = 1,...,r

a) F converges uniformly on I to F, asn + =; G, is finite on 1.

b) HzY converges uniformly on each closed sublnterval of 1 in probab-
llity toh; as n >« b, is left continuous with right hand limits
and h,, of bounded variation on each closed subinterval of I if F?

varies with n; if Fr: is fixed, hi need only be bounded on each
closed subinterval of I.

¢) ¥, (%) Yp ®as n > = for each t € 1.

II. If u¢ I, then for each i = 1
a) II by (1-46,)46; < =,

b) lim lim sup P(J
tiu ne

I

HszG €)

(t,ul = 0 for all € > O.

III. If u < », then for each i = 1, ..,

J'(u‘m)HY':IGi»POasn-*m
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THEOREM 4.2.1. Suppose that for each n, Hl""'Hr are bounded predictable
processes, and define square integrable martingales Zi = f HidMi' Suppose
that Condition I holds for some I = [0,u) or [0,ul] and some functions hi’
and let ZT,...,Z: be independent zero mean Gaussian processes with indepen-
dent increments and variance functions f hi(1 - AGi)dGi, defined on 1. If

Condition II holds, such processes are also defined on [0,~]. Then
(=]
{zi: i=1,...,x} ) {zi: i=1,...,x} asn-+>o

in (D(I))r, and a Skorohod-type construction (see Theorem 2.4.3) is pos-

sible with sup !Z.(s)-—Z?(s)I + 0 as n + » almost surely for each t € 1
selo,t] 1 i

and each i = 1,...,r. Adding Condition 11, this statement also holds with

1 replaced everywhere by [0,ul, and also adding III, with I replaced

with [0,=].

PROOF. We may suppose throughout that Condition I holds. By Ia and Ib, and
using the fact that Gi is finite on I, it is easy to show that <Zi'Zi> =
= f HiYi(i-—Acﬁ)dGz converges uniformly on [0,t] to [ hi(l-—AGi)d.Gi in
probability as n -+ », for each t € I. If Condition II holds too, then
arguing directly or by BILLINGSLEY (1968) Theorem 4.2, we have uniform
convergence on [0,ul; adding Condition III extends this to uniform conver-
gence on [0,=]. Moreover, for i # i', <Zi’zi'> = 0 for all n.

Next, for each € > 0, for each n and each i = 1,...,r, define proces-

ses J€ and RiE on [0,») by

Je(t) = X{]Hi(t)lS€:i=1l-"'r}

and

o
]

. J 22y, (1-3_) (1 - Ac™)aG™ = J (1-3_)d<z.,2.>.
ile 1 1 £ 1 1 € 1 1

Note that JE is predictable and that

sup IHi(s)Yi(s)l
2 se[0,t]
sup H (s) < -
sel0,t] i inf Y. (s)
! se[0,t]
sup hi(s)+ sup IHi(s)Yi(s)-—hi(s)I
< selo,t] sel0,t]
Yi(t)
So by Ib and Ic, sup H?(s) + 0 as n + » for each t € I, consequently
sel0,t] P

i
for each i, €¢ > O and t ¢ I,
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P(R, (£)=0) > 1 asn >
1€

This certainly implies that sup _ R, (S) *p 0 as n +~ @, for each i,
sel[0,t] 1€ . )

€ >0, and t € I. adding Condition IIb extends this to t = u, and adding

Condition III as well extends it to all t e [0,«].

For each n = 1,2,... and each i = 1,...,r, define

€ = =
z;i = [ JﬁdZi [ JEHidMi
and
F € _
i = Zi -z = J (I—JE)HidMi.

Note that for any i, i' and €
sup lAgiI < ¢ sup IAMJ._!,
[0,=] Lo,=]

€

Ei and gi, never jump simultaneously, and

<z,z2% = r
kR 1

n . . . . .
If Fi is continuous for all i and n (and so Fi is continuous for all i too)

then almost surely,

sup IAMi(s)I <1
sef0,]

for each i and n, and f hi(l - AGi)dGi is a continuous function. Theorems
2.4.1 and 2.4.3 now immediately give all the required conclusions.

Suppose on the other hand that some or all of the F?'s and Fi's have
discontinuities. We can at least enumerate all these discontinuities in a
single sequence tl'tz""' say. The idea of the proof will be to spread the
jump that Ni makes at tm over a time interval which will be inserted at this
point. After this is done, and all the other processes are suitably defined
over the inserted intervals, Theorem 2.4.1 will apply giving a continuous
process in the limit. Then by deleting all the new time intervals, we shall

obtain the required result.

Choose § >0, m = 1,2,..., such that Z;_l 8, < @ . Define the time
transformation ¢*: [0,] + [0,»] by

Ty =t+ T s

m
m.tmst
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*
pDefine §(t) = Ap (t). So §(t) = 6m if t = tm for some m, otherwise §(t) = O.
* *
Let I = [0,¢_(u)) if u ¢ T and I* = [0,¢*(u)] if u € 1. Note that for each
t* there exists a unique t such that ¢j(t) <t < ¢ (t), and t € I if
e e 1.
* —
We define processes N,, Yf, Mf, Zf, HT, J*, Z?*and Z?* on the extended
i’ i i iri e’ =i i
time axis as follows. Firstly, if t = ¢ (t) for some t, we define
* *
Ni(t ) = Ni(t)’ etc. Next, extending (Q,F,P) if necessary, we define Ni on
* * *
the interval [¢_(tm),¢ (tm)) by letting N, make, conditional on Yi(tm) and
ANi(tm), ANi(tm) jumps of size +1 at a random selection of ANi(tm) points
out of the Yi(tm) points

* 2
¢_(tm) +W5m’ L = 1,...,Yi(tm).

This is done independently over all i and m. We let YI and H: be equal to
* K * % .

Yi:¢ (tm)l = Yi(tm) and Hi£¢ (tml) = Hiitm) respectively on the interval

[¢_(tm),¢ (tm)); and for t e [¢_(tm),¢ (tm)) we define

* * _ * *
MI(E) =My (Em) + (N[ (D) - N (£ =)

n
3 AGi(tm).
m

£ -07 (£ )
- [(Yi(tm)+1) ]

(we write [x] for the entier of x.) So MZ is piecewise constant on this
interval with jumps of size ANz(t*)A—AGg(tm) at the Yi(tm) points defined
above. Now conditional on th_, Yi(tm) is fixed and ANl(tm)""'ANr(tm) are
independent, ANi(tm) being binomially distributed with parameters Yi(tm)
*
and AG?(tm). So conditional on th_, Ni makes independently over i=1,...,r
. . . * )
and & = 1,...,Yi(tm) a jump of size +1 at the point ¢_(tm) + Yi(tm)+1 Gm
with probability AG’i‘(tm) .
*
Next define o-algebras Ft* by
* * * *
FoVolN,(s™): s¥<t™, i=1,...,x} if £ =¢ (t),
F* t i
*

*
t FoVolNr(s™): s¥st, 1=1,...,2} if ¢"(0) < £* < 6" (0).

* . .
We now see that M,, i=1,...,r is a square integrable martingale with

respect to {F:*: t* e [0,21}, with

<M.,Mi>=0, i# it

and
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* *
<M, ,M.>(t) if t = ¢ (t),
1 1

* kK x %
MM > () t-¢_(t)
500

if o7(e) = £ < ¢F(w).

n n
Uy M > (E) + {(Yi(t)ﬂ) ](1 - AG, (1)) AG, (t)

We can define Z (t ) = ft H dM for all t . Note that H and Y are pre-—
dictable with respect to {F : t e [0,]}, so that Z is a square integra-

ble martingale for each i. We define as previously

* *
Te®) = Xmre¥yge =1, . w)
* —ex * ex
X _ [ Jazf ama 7T =z, -zo .
-i e i 1 i -1

Note that for any i and € > 0, almost surely

sup IA;E*(t*)l < e sup |AM’.l‘(t*)| <e
t*el0,=] t*e[0,=]

* -
Also with probability 1, g_i and Zi:k never jump simultaneously for all

i, i' and € > Q,
* %
<2542y, = 0 for all i # i

and if ¢7(t) < t* < ¢™(t), then

sEk ek % € zE
<Z > < < >
i ,Zi (t) Zi,Zi (t) '*P 4]

* *
as n+ =, as long as t € I . If Condition II holds, this is also true for

*

€ [0,¢ (u)], while under the further addition of Condition III, even for
*
t e [0,»].

50 to apply Theorem 2.4.1 to {Z i=1,...,r}, it remains to show that

Z >(t ) converges in probabll:.ty to some continuous function as n > ®

for each ¥ e 1%, 0,6 (w7 or [0,»] according to whether Conditions I,
I and II, or I, II and III hold.

) * * * % *
Now if t = t) then <2,,Z.> = t -
o ( 127 (8) = <2,2.>(8) Io h, (1 - AG,)dG;

under the appropriate set of conditions. If however ¢*(t) <t <¢ (t), then
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¥, 25" =
1794 a

* *
t =¢_(t)
[(Yi(t)+1) Xy ]

2 n n
<zi,zi>(t-) +Hi(t)Yi(t) (l—AGi(t))AGi(t).

Yi(t)
* * *

According to whether t e I, [0,¢ (u)] or [0,%] we have t ¢ I, [0,u] or

[0,»] respectively. In each case, under the relevant set of conditions,

t-

<Zi,Zi>(t-) e J hi(1-AGi)dGi as n » o,

0

1f t € I, then by Ic, Yi(t) »p © and so

£ 6% () £ =97 (1)
{(Yi(t)i-1)——g?€7——]///§i(t) s TS esnhTe.

By Ib, K. (t)¥, (t) >, h (t) and by Ta, (1-AG}(t))acT(t) » (1 - 86, (£))4G, (t).
so for £ e 17, ¢7(£) < £" < ¢% (1),

t- * ok
* _k * t -¢_(t)
@.2.1) <z’ o JO hi(l—AGi)dGi+-—J-t—)—hi(t)(I—AGi(t))AGj_(t)

as n > ®,

If u ¢ T and II holds, then using the convergence of <Z;,ZI> on I* that has
just been proved and using BILLINGSLEY (1968) Theorem 4.2 in the same way

as before, we see that
u-
<z¥,275 (6% () » h. (1 - AG,)dG
17770 - Py i it
Also by IIb, for each € > O,
lim sup P(H2 (W)Y, () (1 - A% (w)ac () > €) = 0
P B WYy i i !

n-e

which implies that

* k% * k%
<Z;.2.>(0 () - <Z.,2,>(6_(u)) =+, O.

*
Thus under the addition of II, (4.2.1) holds for all t* e [0, (u)].
Finally, if IIT holds as well, then

* * * * *
< > - < > > >
Zi,Zi (=) Zi'zi (¢ (u)) P 0 as n
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and therefore (4.2.1) holds for all t* ¢ [0,o], recalling that h, = 0 out-
side I by definition.

Now the function of t* defined by the right hand side of (4.2.1) is
continuous, so Theorem 2.4.1 can be applied to prove weak convergence of
{Z;: i=1,...,r} on oINT, (D([O,:b*(u)]))r or (D([0,=1)) respectively
according to whether Conditions I, I and II, or I, II and III have been
imposed. Because we have weak convergence to a continuous limit the Skorochod
construction can be applied (see Theorem 2.4.3 and the remarks followingv
it) to replace i) with almost sure convergence in the supremum distance on
a new probability space (except in the case of D([O,¢t(u))) , when we obtain
almost sure convergence in the supremum distance on [:O,t*] for each
£ < ¢t(u)) . By deleting all the intervals [¢t(t),¢*(t)) we obtain, on
this new probability space, almost sure convergence in the supremum metric
o:er all compact intervals of {Zi: i=1,...,r} to {Z:: i=1,...,r}, where
Zi has all the required properties. Almost sure convergence implies conver—

gence in distribution, so the theorem is proved. [J

A few comments on the proof of this theorem are in order. When all the
distribution functions concerned are continuous, the proof is a very direct
application of Theorem 2.4.1, which is of course itself very much concerned
with "the continuous case". In this part of the proof we only used Assump-—
tion 3.1.1. To accomodate jumps, we had to carry out a rather elaborate
construction to bring us back to the continuous case, and needed Assumption
3.1.2 to do this. It is actually not very difficult to prove the above
theorem in the “"purely discrete case" - the random variables X, . and ;{' .
integer valued - rather more directly, using only Assumption 3]:1.2 andlfj‘-he
measurability requirements of Assumption 3.1.1. However it seems impossible
to use Theorem 2.4.1 for the continuous part and the direct method for the
discrete part in a mixed situation. A more elegant proof than the present
one can probably be constructed by adapting the proof of LIPTSER &
SHIRYAYEV's (1980) functional central limit theorem for semimartingales.

It should be noted that a version of Theorem 4.2.1 could have been
proved w:.t}; the interval I depending on i, I = Ii say, giving weak conver-

enc
gence on I, D(I}), where I = I, 0,u;] or [0,=] according to whether

Conditions I, I and II, or I, II and III were supposed to hold for this i.

Our first application of Theorem 4.2.1 is to the product limit esti-
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mator. Take r = 1, drop the index i, and suppose that the distribution func-

. : . n
tion F? being estimated is fixed, say F' = F for all n.

THEOREM 4.2.2 (Weak convergence of the product limit estimator).
THEORLN 4.<.2

Suppose r = 1 and Fn = F for all n, and suppose that Y/n converges uniformly

on [0,®) to a function y in probability as n + «. Then
b~ ©
n " (F-F) *D (1-F) 2z as n » «

o
on D(I), where I = {t: y(t) > 0} and 2 is a zero-mean Gaussian process

with independent increments and variance function

w t X (AG)
var(z (t)) = J _L%Lélza_~ dc
0 Y

t X{an<y} an

i consistently be estimated b
which may nsi y e Y n 0 YoM ¥

; if F(t) <1 we have

Jt X{an<y} an )
Y

o Y- (1-F(t)?

(see (3.2.21)).

PROOF. As in Theorem 4.1.1 we use the representation (3.2.13) which we here
rewrite as

Xro,1) Y% (155 oy

1 - AG (1-F) ¥

nk(f-F) = (1-F) J

am

on {t: Y(t) > 0}. (If F(t) = 1 then on the event {Y(t) > 0} we have, almost
surely, AN(t) = Y(t) and hence F(t) = 1.) Note that y(t) > 0 implies that
F_(t) <1 and G(t) < «. We shall verify Condition I of Theorem 4.2.1, taking

Y

n'Jd
Y

_ X[O,l) (AG)
(1-AG)

1-F_
1-F_

(see 4.1.4) and taking I as defined in the theorem. The only nontrivial

part of Condition I is Ib. By Theorem 4.1.1, we see that for all t ¢ 1,

sup |F(s)-F(s) ] S 0 asn -+ o,
se[0,t]

So for each t ¢ I



2
X (AG)
0,1) -1
sup £ (s)¥(s) - (——[—1—'-_——A—G—'> y *p 0 asn->e
sel0,t]
. - 2, .

Since Fn = F for all n, we need only verify that the limit h of HY is
bounded on closed subintervals of 1, which is clearly the case.

Thus Theorem 4.2.1 gives us weak convergence in D(I) of [ HM to a

process Zw, having the required properties, in particular such that

var (Zm (t))

]

-1
— e - 4
T RG )y (1~ AG)AG

By Theorem 4.1.1 we also have

t
j W _ G

sup
0 Y

sel0,t]

+ 0 as n >
P

for each t € I, so it is not difficult to show that

nv(s)

sup -
(1-F(s))?

sel0,t]

- var(z“(s))‘ +, 0 asn>o

for each t ¢ 1. O

Theorem 4.2.1 of course also supplies us with a Skorohod construction
in the uniform metric for nli (F-F). We can take advantage of this fact when

F is a discrete distribution, giving weights in I to points t1't2" .. only,
in order to conclude that

{nl’(:?*(ti) - F(g)): i = 1,2,...}

is asymptotically distributed as
@
{(1-F(ti))z () 1 =1,2,...).

Theorem 4.2.2 can also be used to derive asymptotic confidence bands
for F, conservative in the case that F has jumps. For let t € I be fixed,

and note that the process {Z (s)/Vvar 25(t): s € [0,t1} has the same dis-
(-]
tribution as { B(Er—(—z——-(—s—)—)— :

i ian
var(Z= N ¢ S € Lo0,t]}, where B is a standard Brown
motion on [0,1] with continuous paths: both these processes are Gaussian,
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with the same mean and covariance functions, and both have right continuous
paths. So for all x,

0
2z
P< sup Az ()] < x> > P( sup |B(s) | < x>,
sel0,t] vvar z®(t) se[0,1]
and there is equality for all x if and only if the function var(Zw) is con-

tinuous on [0,t]. So for any t e I,

5 o ki
lim inf P( sup 'F(S) _F(S)' < v(t) x)

o selo,e1 | 1~ Fee) | 7 1-F(®)
> P( sup |B(s) | =< x>
55[0’1]
v k
= 7 D@ ((2k+Dx) - 8((2k-1)x)),

k==

where ¢ is the standard normal distribution (see FELLER (1971), page 343,
BILLINGSLEY (1968) page 79, or RENYI (1963), though beware of misprints in
the first two cases). RENYI (1953) gives a table of P([gt’z}f] IB] < v -1—33-)
for various values of y and a, and WALSH (1962) page 334 reproduces the

table with y denoted by A and a by Al' Note that when there is no censoring,

V(t) -1 B
(1-F(t))2 1-F(v)

and the above confidence bands reduce to those proposed in RENYI (1953).
HALL & WELLNER (1980) and GILLESPIE & FISHER (1979) propose other
methods of basing confidence bands for F on the weak convergence of n%(ﬁ—F)
which may be superior in some respects; however our proposal seems to be

the simplest to implement.

In Example 4.1.1, the conditions of Theorem 4.2.2 become
1 tn

n &3=1
tribution function L (see the remarks following (4.1.33)). In this case,

L?(t) + L(t) as n - « uniformly in t € [0,»), for some (sub)-dis-—

y = (1-F_) (1 -L_). BRESLOW & CROWLEY (1974) prove Theorem 4.2.2 under

the usual random censorship model with F and L continuous; MEIER (1975)
sketches a proof under the fixed censorship model, also with F continuous.
AALEN & JOHANSEN (1978) Theorem 4.6 give a result very close to our
Theorem 4.2.2 in the case that F is continuous and has a hazard rate:

they assume uniform integrability (in t and n) of n/Y and pointwise con-

vergence in probability instead of uniform convergence in probability.
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Otherwise their result is more general as it is concerned with estimation

for a Markov chain.

Back in Example 4.1.1, we can in fact obtain a stronger result on

weak convergence on D[0,u], where u = sup{t: y(t) = 0}:

THEOREM 4.2.3 (Weak convergence of the product limit estimator on maximal

closed interval under general random censorship).

Suppose in the situation of Example 4.1.1 that r = 1, F* = F for all n, and

=3 Lol

) Lg.l(t) +~ L(t) uniformly on [0,») as n >«
i=1

for some (sub)-distribution function L. Define y = (1 -F_)(1-L_),

I ={t: y(t) > 0}, and u = sup I. Suppose that y(u) > 0, or alternatively
that AF(u) = 0,

t
(4.2.2)  lim (F(w) - F(£)> I (1-F(1-F) -1 e =o,

ttu 0

and

(4.2.3) lim lim sup J —_—t— _(1-AG) dF = 0.
tty e () (-1

Then defining for each n T = sup{t: ¥v(t) > 0} and FT(t) = F(tAT),

51 -
1-F

Fo~ T ©
BT E T E ) Ty KXo,y T T ENE 4 X yyU

. < n . , 3
as n > ® in D[O,ul, where Z is a zero-mean Gaussian process on I with in-

dependent increments and variance function

t
var (z° (t)) =J (1-F) (1-F)(1-1)) 7" ar
0

(1-F(u))z () if y(u) > 0,
= Yiim (1-F(£)2 (t)  if y(u) = O.
tu
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[=-]
Since %im (1-F(t))2 (t) almost surely exists, this does define a
u

random element of DLO,ul. If y(u) = 0 and F(u-) = 1, then U = 0.

If also F is continuous and F(u) = 1, then
- 2 3
sup |[nV - (1-F)° var 2 ] *p 0 asn > o,
[0,u]

PROOF. Note first that in the case y(u) = 0, (4.2.3) and (4.2.2) imply

(4.2.4) J (1-1 )" 1-00) aF < =
I
and

t
(4.2.5) lim lim sup (F(u) - F(t)) - J X[o 1)(Lr_‘)
ttu n->e 0 !

c(t-m (- a-t") ! ar = o,
Next we shall show, using (4.2.2) and (4.2.4), that lim (1- F(t))Z (t)
f
exists almost surely if y(u) = 0. Suppose y(u) = 0, and fix s < u for the
moment. On [s,u), (Zw—zm(s)) is a submartingale and by the well known

Birnbaum-Marshall inequality (BIRNBAUM & MARSHALL (1961) Theorem 5.1),

v

P( sup (1—F)2(Z°°-—Zm(s))2 e)
[s,u)

(1-F) 1 f -1
) J[s g EUE)(AF (L) " & Jro o (1-L) ~ (1-4G) &F.

We have in fact used a slight sharpening of the inequality because BIRNBAUM
2 . R

& MARSHALL (1961) require that (1-—F)2 and E((z7-2"(s))“) have no jumps in

common. However their proof is easily adapted to take care of this extension.

There fore

P( sup ((1—F)-Zm - (1—F(S))Zm(5))2 P 25)

[s,u)

<1 J (1-1)7F (1-86) @ + P((F(u-) -F() 22" (s 2 2 )
€ s,
1 -1 1 2 ad

< = J (1-1L) (1~ AG) aF + Z(F(u-) - F(s)) var(z (s)).
€ Js,u)

00
Let e > 0 and § > 0, m=1,2,..., satisfy e, + 0 and 2m=1 §, < @. For

each m by (4.2.2) and (4.2.4) and the fact that y(u) = 0, we can choose a
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5m < u such that

P([sup )((I-F)'Zm - (-ris )z )% 2 2em> <6 .
s_,u
m
It is now easy to see by the Borel-Cantelli lemma that
lim (1-F(t))Z (t) exists. Note that if y(u) = O and F(u-) = 1, then by
), d-rens o s, 0as ttu = in this case, U = g.
Now we prove weak convergence of n"(1-F)(F~-F )/(l1~F"). Define for

each n
y [1-F_g ¥ (F-F)
Z=n - 3 aM =n -
1-F

(replace t with tAT in (3.2.13)) so that

¥ 1-F

S .
n T(F—F ) = (1=-F)+2.

1-F

We already know by Theorem 4.2.2 that (1-F)-Z > (1 -F)-z" in p[0,t] for

each t ¢ I. So by BILLINGSLEY (1968) Theorem 4.2 it remains to show that
if u ¢ I, then

lim lim sup P( sup |(1—F(s))Z(s) - (1—F(t))Z(t)] > e) =0
thu e selt,ul

for all € > 0.
Suppose y(u) = 0, fix t < u for the moment and note that

sup | (1-F)+2 - (1-F (£))Z (t) |
[t,ul

< sup |[(1F)-(z-2(t) | + (F(u) -F())|z(t)].
[t,ul
For each t' € (t,u] such that F(t') < 1, z-Z(t) is a square integrable
martingale on [t,t'], and (z—z(t))z— (<Z,2> - <z,2>(t)) is a martingale

on [t,t']. Both processes are zero at time t and have paths of bounded
variation. Also, for s € [t,t'],

(1-F(s)) % (2(s) -2 (1)) 2 =J (1-m)2a((z-z () ?) +
(tls]
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N z_ - zenZaca-mn?)
(t,s]

< (1-F)2d((z-2z(£))?) .
(t,s]

2, ;
Considered as a process, (1-F)  is predictable, so for any stopping time S

taking values in [t,t'],

EC(1-F (5)) 2 (2 (8)-2(£)) )

E(J (1—F)2d((Z—Z(t))2)
(t,s]
E(J (1—F)2d<z,z>)
(t,s]
E(J (1-F1%2 32 (1-26) —-—dF——>,
- Y 1 -F
(t,s] -

where the last inequality follows from (4.1.6). Theorem 2.4.2 therefore

A

IA

gives us
- 2
s -
P( sup |(1—F)(z—z(t))|>e\,s—5+p(j -%1—1—_%"—))—-J§(1—AG)GF>6).
[t,t'] - [t,t'] -
If F(u) < 1 we can choose t' = u in this relation; but otherwise let-

ting t' 4 u also shows that it is true with t' = u. By Theorem 3.2.1 and
VAN ZUIJLEN (1978) Theorem 1.1 and Corollary 3.1,

- 2 X wh
P(J .(.%.1::'”“_?—.))_33(1-&)@23“3( —-[—O-LL)—;-—_—(l—AG)dF>=O(1)
(t,u] - (t,ul (1-1))
as B ¥+ 0 uniformly in n. Therefore by (4.2.3)
lim lim sup P( sup |(1-F)(Z-Z(£))| > €) = 0 for all € > O.
thu o [t,ul
It remains to show that
lim lim sup P((F(u)-F(t))|2(t)| > €) =0 for all e > 0.

ttu n-o

But because 22 - <Z,Z> is a martingale on [0,t], and <Z,Z> a nondecreasing

predictable process, again by Theorem 2.4.2 we have



PU(F(0) ~F(ENz() ] > €)

t ~ 2
s Sy P((F(u)—F(t))z [ L=r) 53
0 (1-F)

(1-4AG)daG > 6>
€

By Theorem 3.2.1 and VAN ZUIJLEN (1978) Theorem 1.1 and Corollary 3.1

n
t =2 . [t X (L))
pq L -F) 384 _ac)dG 2 B 3 J Lo.1) dF) = 0(1)

0 (1-F) 0 (1-F) (1-F_) (1-L")

as B + O uniformly in n; and hence (4.2.5) yields the required result.
Next we consider the variance estimator n‘?, supposing that F is con-

tinuous. If y(u) > O there is nothing to prove. So we suppose y(u) = 0;

because F(u) = 1 this implies that (1- 1?‘(t))2 var Zm(t) -+ 0 as ttu. In view

of Theorem 4.2.2 and the continuity of F, we only have to show that

s X

-~ Y>1} AN

lim lim sup P( sup (1--F(s))2 J n —%—_—1—1- < e) =0
ttu e selt,ul 0

for all € > 0. Now by Theorem 3.2.1, it suffices to prove this with 1-F(s)

replaced by 1 -F(s). Note also that because X{Y>1}/(Y‘ (Y-1)) is predictable
and bounded

X X
£ ] o2l AN J n 21 g5

Yy-1 ¥ Yy-1

By the Birnbaum-Marshall inequality and the above remarks,

s X
P( sup (1-F(s))2 J n --{}3—1—}61\1 > e)

selt,ul o (¥hY
~ 2 t X 2 X
< U-F(£)) EJ {¥>1} j (1-F) E(n {Y>1}) .
€ Y-1
(t,ul

s n
€ 0 (Yy-1)

n
E(n X{Y>1}> < 35( n+l )X ) < 3X[0,1)(L‘) s
(y-1) (y+1) J~L0,1) - (1-F ) (1-Lri)

4G +

Now

where the final inequality holds by HOEFFDING (1956) Theorem 3. Relations
(4.2.3) and (4.2.5) now yield the required result. [

Let us discuss some of the relationships between Conditions (4.2.2)

to (4.2.4). If 1" = L for all n and y(u) = 0, then (4.2.3) and (4.2.4)
are equivalent.
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Consider now the case in which F(u) = F(u-) = 1. We can write

(1-r) 2 J ((1-F) (1-F ) (1-L_)) " ‘aF

- J (1-) "t (1-aG)aF + J (J((l—F) (1-F) (1-1_)) "F ama-n?,

where the first term on the right hand side is nondecreasing and the second
nonincreasing and both are zero at time zero. So in this situation, (4.214)
implies that the limit in (4.2.2) exists, though not necessarily that it
equals zero.

Finally, suppose that F is continuous and F(u) = 1. If (1-L) 2 c(1—F)a
for some o < 1 and ¢ > 0, then (4.2.2) and (4.2.4) both hold; if on the
other hand (1-L) < c(1-F) for some ¢ > O then (4.2.2) and (4.2.4) both fail.

Theorem 4.2.3 gives a positive answer to a conjecture of HALL & WELLNER
(1980), so their paper now also provides a method for constructing confiden-
ce bands for F on [0,u] instead of on [0,t] for some t < u. Several authors
(e.g. EFRON (1967), HOLLANDER & PROSCHAN (1979)) make use of weak conver-
gence on [0,u] when in fact the literature only provides weak convergence
on [0,u). The proof of Theorem 4.2.3 can be adapted to solve a long out-
standing problem concerning the product limit estimator: how to use it to
estimate mean lifetime when no t < = exists such that F(t) = 1. We present
a discussion of this problem and some preliminary results in Appendix 5.

Of course in the bounded case just mentioned Theorem 4.2.3 can be applied

directly.

4.3. Weak convergence: test statistics of the class K

Taking r = 2 and Hi = K/Yi, i =1 and 2, in Theorem 4.2.1 will give
conditions for asymptotic normality under the null hypothesis of W(«) (and
more generally also of W(T) for a possibly random time instant T); for under

the null hypothesis we have
dn dan
(4.3.1) W=j'K—l-JK-—g=J-§-dM1-J£&4

Morxe details are given in Corollaries 4.3.1 and 4.3.2. However we must also
prove consistency of the null hypothesis variance estimators Vl(m) and
VZ(M). The next result establishes consistency under only slightly stronger
conditions than those of Theorem 4.2.1. In it we also consider contiguous
alternatives, so that the result can be used in Chapter 5 too. Note that
Conditions (4.3.3) to (4.3.5) needed for consistency of V2(m) are empty
under the null hypothesis.
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LEMMA 4.3.1. Consider the situation of Theorem 4.2.1, taking r = 2 and

Hi = K/Yi, i = 1,2. Suppose that Condition I holds, with the functions hi
left continuous with right hand limits and of bounded variation on closed
subintervals of 1 even if F? does not depend on n. Suppose that the limiting

distribution functions F1 and F2 are equal, F1=F2=F say. Then with § = 1

2 s
(4.3.2) sup IVSL(S) - z j hi(l - £G)dG]| *p 0 asnre
sel0,t] i=1-0

for each t ¢ 1. If Condition 11 holds, we also have (4.3.2) with t =u

and with the further addition of Condition III, (4.3.2) holds with t = o,
The same statement holds with £ = 2 1f the following three conditions

(for i = 1 and 2) are added to Conditions I, 1I and III respectively:
t n

(4.3.3) [ |dGi-dG| +0 asn~+wforalltel;
0

(4.3.4) Ifuél, de?

lim lim sup sup :(S) <o i'# i
ttu  ne  se(t,ul dGi,

(4.3.5) If u< =, dG?
lim sup sup o (s)| < = it # i

o ge(u,®) dGi'

PROOF. From (4.1.20) and (4.1.21) we see that

2 2 ANi—l dNi
v=1I JHi Yi(l T Y. ) Y,
i=1 i i
and
v - § J' Hz . (1 B AN1+AN2—1> d(N1+N2)
2 ia1 i1 Y1+Y2—1 Y1+Y2

So under Condition I with the extra conditions on hi' it is easy to see
that (4.3.2) holds for all t € I if (for & = 1)

] dNi
ol o]
and if (for & = 2)
s AN +N,)
selo.t] Jo ey, S0

as n + » for each t € I and each i = 1,2. The first relation follows imme-

diately from Theorem 4.1.1, while the second relation follows by writing, on
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{s: ¥ (8)AY,(s) > o}

s d(N,+N,) s an Y an
172 Y 1 S 2 2
(4.3.6) j —————-G=[ *_l_(*_-dgn)+[ —-(—~_aen)
o Y1 tY¥, o ¥yt ¥, \Y, 1 Yo+ Y\ Y 2

r ¥y n s Y a
+ ———(dG" - ag) +J — (&G, - dG) .
0 Y1 + Y2 1 0 Yl + Y2 2

Using Theorem 2.4.2 in the same way as was done in Theorem 4.1.1 to prove
consistency of f dNi/Yi as an estimator of G?, we find for any i and any
fixed t € T that

( s Yi dNi n
P sup I —————— (___.. - J.dG,) > €>
sefo,t] |10 1t ¥ \Yy  1H

2
t ooy, J
SH+P<J /——-l——-) Li1-achac® > n)
e o \¥+ Y, Yi( 1746; > nj
. (G’i‘(t)
SE+P—-———-—Yi(t) >n)

and so the first two terms on the right hand side of (4.3.6) converge uni-
formly in probability to zero on each closed subinterval of I. The same
holds for the last two terms by Assumption (4.3.3).

Suppose next that u ¢ I and that Condition II holds. For any s<t<u,

§ 2, Wy
vV, (t) =V, (s) < J HY, —
! ! i=1 d(s,t] T Y
while as t varies,
2 an, 2
[ i
i=1 7 (s,t] i i=1 7 (s,t]

is a martingale on [s,ul, zero at time s. By Theorem 2.4.2 therefore, for
all € > 0Oand n > O,

2
n 2 n
PV, () =V (s) >€) €2+ P( )) J HY dG, > n)-

i=1 (slu]

So by Condition II,

lim lim sup P( sup |V1(u)—V1(s)| > s> =0
ttu n<e se (t,ul

for all € > 0. Using BILLINGSLEY (1968) Theorem 4.2 as usual and the fact
that IE hi(l—-AGi)dGi is finite shows that (4.3.2) holds with t=u and 2=1.
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Adding Condition III, this argument may be extended to all t € [0, ,
still with & = 1.

For ¢ = 2 we note that for any s < t < u,
d(N1+N2)

2
Vy(8) -V, (s) < iz

HY, —
iYi Y 1y
1J(s,t] R S

while for each i and i', as t varies,

n

an G, ,
2 il J i P S

BY, o3y~ iTiTit Y, +Y
J’(s,t] Ui+, (s,t] "7 172

is a martingale on [s,ul], zero at time s. So by Theorem 2.4.2, for each

¢ >0and n > Q,

(V, () =V, (s) )s“+§P(§ I HszGn>n>
P{V,(u) -V,(s) > ¢ - A i 2
2 2 € 421 Vyep J(sul YT
2
<0y z P(,{ H?Yidsz > [21 / (1+c))
& = (s,ul *

for s sufficiently close to u, and n sufficiently large, where c < * is some
constant greater than the left hand side of (4.3.4). Using Condition IT
again gives us the required result for t = u and & = 2.

Finally using (4.3.5) and Condition III in the same way for the case
t = @ and { = 2 completes the proof. [

We can now give conditions for asymptotic normality of a test statis-
tic of the class K (see page 55) in terms of the conditions I, II and IIT
which were listed at the beginning of Section 4.2:

CORCLLARY 4.3.1. For each n let K € K be a random weight function generating
test statistics W(M)/va(w) and more generally W(t)/ﬁl(t) for each

t e {(0,#], L = 1,2. Define H = K/Yi, i =1 and 2, and let I be an interval

[0,u) or [0,ul for some u € (0,%]. Then under the null hypothesis
n_.n

E‘1 = FZ = F for all n, we have

wit) ) N(O,oz(t))

and

5 2t
vole) =, o%(e) = ] J

hi(l—AG)dG L =1 and 2
i=1 ‘0

for each t « 1, [0,ul or [0,*] according to whether Conditions I, I and II
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or I, II and III are satisfied. (Condition I must be satisfied with the
extra conditions on hi even though F? does not depend on n.) Note that hi

satisfies

2 2
Hi(t)Yi(t) =K (t)/Yi(t) 5 hi(t) tel

hi(t) =0 t ¢ I.

Sometimes we shall be interested in the test statistic W(Tn) for some

n
random time T defined for each n = 1,2,... (cf. the discussion at the end

of Section 4.1 on the test statistic of EFRON and Example 3.1.2, Type II

censorship):

COROLLARY 4.3.2. Consider the situation of Corollary 4.3.1. Let ™ be a

random time instant such that Tn o t0 as n -+ ©; if tO is a jump point of

02(t) (defined in Corollary 4.3.1) suppose that either

P(Tn € [to,to+e)) > 1 as n—+ o for all € > 0

or

P(Tn € (to—s,to)) - 1 as n > « for all € > 0.

If Condition I holds (with the extra conditions on hi) and P(Tne I) ~ 1 as

n + «, then

W(T™) ) N(0,0%)

and

n 2
VQ(T ) > ©

where c2 = Uz(to) unless Tn approaches t,. from below, when 02 = 02(t0-).

0
If P(Tn e [0,ul) = 1, but Conditions I and II hold, the same conclusion is
valid; the conclusion remains true if to is arbitrary but Conditions I to

III hold.

Let us consider the special case of the test statistics of GEHAN,

EFRON and COX, for which we have (cf. 4.1.22) to (4.1.24)):
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n,, n, (Y1> <Y2)
i i
— 5 \— - (GEHAN)
x11+1').2 Yi n1 1'12
2 n, n,
2 K~ _ 1" A, 2 22,5 2
HY, =3 = \igmo v, 0 Fp) (1-Fp )99, (BFRON)
i 1772 71
2 2 2 .
DBy vy Yo\ /nyth,
+n, Y.\n n Y, +Y (cox)
nyTy VY 2 1752

for i = 1,2, and i' # i. Suppose that functions y, and v, exist such that ag

n -+ «
Yi(t)
(4.3.7) sup o - yi(t) -rp 0 i=1and 2
tel[0,*) i
and suppose also that
i
(4.3.8) n An, >, wyem, P, € [o0,1] i =1 and 2.

Recall from Section 4.1 that the functions y; are of necessity left contin-
uous, nonincreasing, take values in [0,1], and are such that yi(l —F__)—1 is
nonincreasing. A sufficient condition for (4.3.7) to hold in Example 4.1.1
is that the average censoring distribution for each sample converges uni-

formly to some distribution, i.e.

n,
i
n 1 n .
(4.3.9) Ly = o }‘ Lij *L, asn->e for each i
i j=1
uniformly on [0,») for some (sub)-distribution functions L1 and L2. In this
-1
case y,(1-F_) * = (1-L, ); even when we are not in the situation of

Example 4.1.1 we shall interpret yi(l -F‘_)-1 as the "limiting average cen-
soring distribution" for sample i.

Let us define
(4.3.10) I = {t: ¥y (B Ay, (8) > O},

Since yi(t) > 0 implies that 1-F(t-) > 0, G is finite on I. It is now easy
to see, using Theorem 4.1.1 for the test statistic of EFRON, that Condition

I holds with this choice of I for each of the three test statistics, if we
take

(4.3.11) hi=——i—'-k2 VA
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and hence (see Corollary 4.2.1)

t ey, + oy
oz(t)=J 171 " P2¥2 2

(4.3.12) k“(1 - AG)dG,
0 ¥1Y,

where

(4.3.13) k. = v4Y,

G
(4.3.14) k_ = (1-F )2
E - 1
and yly2
(4.3.15) k_ =

C Py teyy,

/n{+n
In each case, k is the limit in probability of ﬁan: K.

The situation as regards conditions II and III is different for each
test statistic. It will turn out that (4.3.7) and (4.3.8) are sufficient
and almost sufficient in the case of the test statistic of GEHAN and COX
respectively: to illustrate the "almost" we give a counterexample in which
Wc(w) is not asymptotically normal though (4.3.7) and (4.3.8) hold. We ‘
shall give conditions in the situation of Example 4.1.1 for II and III to
hold for the test statistic of EFRON. These conditions seem close to being
necessary for asymptotic normality of WE(m). Note that Condition III is
often trivially true; e.g. if F(u) = F(®) or if P(Yl(u+)AY2(u+) =0) >~ 1
as n + », In Example 4.1.1 the latter holds if L?(u) =1 or Lg(u) = 1 for
all n.

First we give a useful lemma:

LEMMA 4.3.2. Under the null-hypothesis, if (4.3.7) holds, then

0O
(4.3.16) J y.dG < o«
i
0
and

tY t
(4.3.17) sup I — dG - J yidG *f 0 as n > .,

tel0,=) |70 i 0

PROOF. (4.3.16) follows immediately from the fact that y, < (1-F_). Clear-
ly (4.3.17) holds if [0,») is replaced by [0,s] for any s such that

G(s) < =, Define T = sup{t: F(t) < 1} and suppose G(t) = ®. Then ¥, is al-
most surely zero on (T,*) for each n, and ¥ is zero on (T,®). Also

AF (1) = 0 so that
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T Y, T dNi
E(J idG)=E([ —n-——)SF(T)—F(t) vy 0 as t t+ T
t M t i
uniformly in n. So (4.3.17) holds in the case G(t) = ® too by the usual

arguments. [

PROPOSITION 4.3.1 (Asymptotic normality under the null-hypothesis of the

test statistic of GEHAN).
Suppose that (4.3.7) and (4.3.8) hold. Then with 1 defined by (4.3.10) and

h, by (4.3.11) and (4.3.13), Conditions I to III hold under the null-hypoth-
i
esis for the test statistic of GEHAN.

PROOF. Condition I has been already verified, and Condition IIa follows by

J hi(l—AG)dG < J yidG < = (see (4.3.16)).

2 . :
For Conditions IIb and III, note that H; 'Yi' < Yi/ni for each i and i'.

If u = sup I and i are such that yi(u) = 0, then by Lemma 4.3.2

Y,
lim lim sup P(J ;i-dc > e) =0
ttu  nre (t,ul i

for all € > 0, while if u < = and v, is zero on (u,»), again by Lemma 4.3.2

¥
J — 4G »_ O. ]
(u,@) i P

PROPOSITION 4.3.2 (Asymptotic normality under the null-hypothesis of the
test statistic of EFRON).

Suppose that (4.3.7) and (4.3.8) hold and let I be defined by (4.3.10) and
hi by (4.3.11) and (4.3.14). Then under the null-hypothesis Condition I
holds for the test statistic of EFRON. In Example 4.1.1, under (4.3.8) and
(4.3.9), Condition II holds if for each i

n,,

2
n 2
LI Xgg, gy (B3 -F )

(4.3.18) lim lim sup s J
tta e 12 J(¢,ul (1 - L?_)

dF =0 i' # i
so that in particular

4.3.19 U-F)U-F) o
@339 o, | e <

Condition III holds if for each i

n { % X @ ) ra-r )2
(4.3.20)  lim —= J j=1 *[0,1) 7y~ -
2 7 (u,=)

o n1+n (1 - L?_)
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PROOF. Condition I has already been dealt with. So consider the situation
of Example 4.1.1 with (4.3.9) holding.
Condition (4.3.19) is precisely IIa. For

J h, (1 - AG)dG p.,J (1-F)l-F _dF
1 * U

yi 1-F_ 1-F_

0 'J (U-F)(1=F) o
1

T -z

Recalling that

n n
2, Py i, =2 2. A 2
HiYi = n1+n2 J1J2 Yi(l _Fl—) (1 —F2__) ’

under Example 4.1.1 we obtain by Theorem 3.2.1 and VAN ZUIJLEN (1978)
Theorem 1.1 and Corollary 3.1

n,, _ _ 4
P(HiYi D S 3,3, 4 -F) — on [o,m)) =1-o0(1)
172 (1—F_)(1-—Li_)
as B + 0 uniformly in n. Conditions IIb and III now follow immediately from
(4.3.18) and (4.3.20) respectively. [

Note that we only used Example 4.1.1 to supply a uniform bound for
P(Yi/ni 2 8(1-F_)(1-'L2_) on {t: Ji(t)> 0}); so some extensions to other
types of censoring can also be made. Note also that if L? = Li for all n
and pi € (0,1) for each i, then (4.3.18) and (4.3.20) follow from the
slightly strengthened form of (4.3.19):

(1-r)?

(4.3.21) I =
; @=L

dF < =, i =1 and 2.

If F is continuous and F(u) = 1, (4.3.18), (4.3.19) and (4.3.20) hold if

for some ¢ > 0 and a < 3,
n o .
(1—Li) > c(l1-F) for all i and n;

(4.3.18) fails in this situation if for i = 1 ox 2 and some @ 2 3, ¢ > 0,

we have pi, # 0 and 1—Li < c(l—F)a.
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PROPOSITION 4.3.3 (Asymptotic normality under the null-hypothesis of the

test statistic of COX).

Suppose that (4.3.7) and (4.3.8) hold. Then with 1 defined by (4.3.10) and
hi by (4.3.11) and (4.3.15), Condition I holds for the test statistic of
cox. If u ¢ 1 Condition II holds unless AF(u) > 0 and for i =1 or 2,

Py = 0 and yi(u) > 0. If u < » Condition III holds unless F(u) < F(«) and
for i = 1l or 2, p; = 0 and yi(u+) > 0. Condition II also holds if
Yl(u)AYz(u) = 0 almost surely for all n, and Condition III if

Yl(u+)AY2(u+) = 0 almost surely for all n.

PROOF. Condition I has already been dealt with. Now

For i = 1 or 2, Py > 0 and by Lemma 4.3.2

n,+n, Y
J 1n' : a6 p;% J y;d6-
(t,u) i i (t,u)

So Condition II holds if AG(uw)

0, or if Yl(u)AYZ(u) = 0 almost surely
0,

i}

for all n. If pi < 1 and yi(u)

n,+n, Y
172 i
J n;‘- ;'—dG +P 0,
{u} *
so Condition II also holds if for i = 1 or 2, pi < 1 and yi(u) = 0.

Similarly if for i = 1 or 2, py < 1 and (yi(u+) =0 or F(») = F(u)),

n,+n. Y

172 71 -1

J 1 — dG P,y J Y-dG =0
(o) i Py P g ey 7L

and Condition III holds in this case too. Condition III holds trivially if
Yl(u+)AY2(u+)= 0 almost surely for all n. Since u ¢ I implies yl(u) =0
or y2(u) =0 and u < » implies yl(u+) = 0 or yz(u+) = 0, Conditions II and

IIT can only fail in the situation described in the proposition. [

Let us discuss these results and compare them with what can be found
in the literature. We shall neglect the fact that we consider variance
estimators different from those of some authors, as was mentioned in Sec-
tion 3.3. We therefore only consider the asymptotic normality of W().

Our result on the test statistic of GEHAN is very general. GEHAN (1965)
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considers a permutation test based on WG(w), but BRESLOW (1970) shows how
the theory of U-statistics can be applied under the usual model of random
censorship (Example 4.1.1, with L’i‘j = L, for all i, j and n) to obtain
asymptotic normality of wG(w), and sketches a modification to deal with
fixed censorship (Example 3.1.4) under a condition equivalent to (4.3.9).
He works with F continuous and Py e (0,1).

Apart from the restriction to Example 4.1.1, our result on the test
statistic of EFRON is also very satisfactory. Condition (4.3.19) seems to
be a morxe or less necessary condition for asymptotic normality of WE(w).

EFRON (1967), working under the model of random censorship just men-
tioned and assuming F and Li to be continuous and pis (0,1), also assumes that
(4.3.19) holds in his sketch of a proof of asymptotic normality of WE(G).
However his proof only establishes, in our terms, weak convergence of the
process W, on D(I). So our results show that an extension to D([0,»]) is
possible.

As we remarked in Section 4.1, it seems advisable to use WE(t) as test
statistic for some t such that yl(t) > 0 and yz(t) > 0. EFRON (1967) makes
this suggestion, but does not actually prove asymptotic normality in this
case.

Finally we consider Proposition 4.3.3 on the test statistic of COX.
CROWLEY & THOMAS (1975) prove asymptotic normality of Wc(m) under the same
random censorship model as above, assuming that F is continuous and
pi € (0,1). So our proposition generalizes this result.

We now show by a counterexample that Proposition 4.3.3 is not valid if
only the Conditions (4.3.7) and (4.3.8) are imposed. More precisely, we
show that in Example 4.1.1, wc(w) is not necessarily asymptotically normal-
ly distributed, even though (4.3.8) and (4.3.9) hold. We construct this
counterexample by letting Condition II fail, which requires F to be discon-
tinuous. However similar but more complicated counterexamples can be con-
structed with continuous F in which Condition III fails.

In Example 4.1.1, suppose that u ¢ I, Py =0, y;(w > 0 and AF(u) > 0.
We must have u < « and y2(u) = 0. Since “Lg = L2 for all n" would imply that
"Y,(u) = 0 almost surely for each n", we must allow Lg to vary with n (as
in the model of fixed censorship). As we assume that (4.3.9) holds, we shall

suppose that

L’z‘(u-) < 1 for all n, L‘z‘(u—) +L,(u-) =1 asn>o.
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To avoid degeneracies, we strengthen our previous assumptions slightly to
Ll(“') <1, 0<F(u-) <F(u <1, and py = 0.

Now suppose that for some vy <u < Vot F is constant on [vl’u) and on

[u,vz). Suppose also that Li(vi) < 1 for each i, and that L?(v2—) = 1 for

each i and n. In this situation
Wc(w) = WC(VI) + AWC(u),

where under the null-hypothesis, by (4.1.3), (4.1.18), (4.1.19) and (4.1.24)

@on  w- [z T ke ——AM2>
C nlanylwz Y, Y4, Y,

i -1
y AN1 nl-l-n2 1 Y2 Yl Y2
=Y15! - 4G n n,) n ;—+n—- J1J2
1 2 1 1M1 1
5 -1
3 AN2 nl-m2 Y1 /YZ Y1 Y2
-y o) S )\ ) T
2 2 1 1 1 1

. e Yo(w
We first show that if

e [0,2] as n + =, then AWC(eo) and W, (v,)

are asymptotically independent and

yl(u) c
(4.3.24) ch(u) 5 N(O,AG(U) (1 -A4G(u)) )

yl(u) + C

(We already know that W_(v,) - N(O,cz) for some 02 > 0.) Note that it is
c 1t D ¥ (u)
-

always possible to construct L2 such that a p € for a given c; we have
1

Y2(u) oy n
E( o, ) = n—l-(l-F(u-)) (1 -Lz(u—))

¥, (u) Y, (u)
var( 2 ) <L E( 2 ) ;
n, n; n,

and

if ¢ € (0,) we can then define Lg(u-) by
n oy
(1-F(u-)) (1 -Ly(u-) = —c
2

for sufficiently large n; otherwise we define Lg(u—) by
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ol

(1-F(u-) (1-L)(u) = L.

2

B

n

for all n, where c is suitably chosen so that in particular c, v 0 if

= 0 and <, t o if ¢ =

n1+n2 35 AN
n

Since Y, (u)/n, +_ y.(u) > 0 and > 1 as n + ®, while Y: (==~ AG)
1 1 1 1 Yi

is bounded in probabiiity as n + «, the case ¢ = 0 is immediate
(EYi(%§% - AG)T = AG(l._AG)EJi by Assumption 3.1.2). If ¢ > 0, then
Yl(u) +P © and Yz(u) +P ® as n > « and it is now easy to show, using
Assumption 3.1.2, that

AN, (u) AN (u)
1
('§—733 - AG(u)) and Y (u) (??————'- NS(u))
1

W (v Y ()
are asymptotically independently normally distributed with means zero and
variances 02, (1 - AG(u))AG(u), and (1 -AG(u))AG(u) respectively. So
(4.3.24) holds in this case too.

We now obtain our counterexample by constructing the Ln'

2
Yz(u)/n1 converges in probability to different values of c¢ along different

s so that

subsequences; then Wc(m) does not converge in distribution along the whole
sequence.

Actually this is not a counterexample to asymptotic normality of
Wc(w)//GE;T:r, % =1 or 2; for provided 02 > 0, it is easy to see that
along each subsequence for which Yz(u)/n1 ~+ ¢ for some c, ch(w) converges

P
in probability to the asymptotic variance of Wc(m), and hence

(4.3.25) W (=)/YV (=) D N(o,1)

along this subsequence. From any subsequence a further subsequence can be
extracted along which Y2(u)/n1 converges in probability and therefore
(4.3.25) holds along the original sequence.

However, the example illustrates the complications that arise in the
situation excluded in Proposition 4.2.3. Similar difficulties arise in
proving consistency, which was why we assumed °y ¢ (0,1) in Section 4.1 for

the test statistic of COX.
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CHAPTER 5

EFFICIENCIES AND NEW TEST STATISTICS

5.1. Introduction; comparison of variance estimators

In this chapter we shall again be concerned with asymptotic results
for the two-sample case, the basic notations and definitions having been
summarized in Section 4.1 (see especially formulae (4.1.1) to (4.1.5) and
(4.1.18) to (4.1.24)). In Section 5.2 we show how the methods of the previ-
ous chapter can be extended to prove asymptotic normality under a contig-
uous sequence of alternative hypotheses of test statistics of the class K.
The limiting distribution has the same variance as under the null-hypothesis
but a different expectation, from which Pitman asymptotic relative effi-
ciencies can immediately be calculated and used to compare test statistics
of the class. We shall of course pay special attention to the test statis-—
tics of GEHAN, EFRON and COX.

It should be recalled that COX derived his test statistic with the

alternative hypothesis in mind

(1- AGz) cEl
-—————— —— = constant,
(1 AGl) dG2

a so called “"proportional odds" model. In the continuous case, this reduces
to the alternative of "proportional hazards", alsoknown as a "Lehmann alter-
native", dGl/dG2 = constant. It turns out that COX's test statistic is in-
deed the best of the class K for alternatives of proportional odds. This

generalizes previous results concerning the usual model of random censor-—
n

ship (Example 4.1.1 with L?. = Li for all i, j and n) and continuous F1

and F;.

On the other hand the test-statistics of GEHAN and EFRON seem to have
no general optimality properties; their behaviour relative to the best test
for a given type of alternative hypothesis depends on what we shall call

the "limiting average censoring distributions" for each sample (in Example
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4.1.1, these are the L1 and L2

. . n, . .
In the case of random censorship and continuous Fi s just mentioned,

defined by (4.3.9)).

it is known that the test statistic of COX is asymptotically most powerful
against a contiguous proportional hazards alternative if and only if L1= L2.
We shall show that this result is much more generally true, and offer an
intuitive explanation. We also suggest that any nonparametric type test can
only be asymptotically most powerful against a particular contiguous alter-
native if L1 = L2, and suggest that even if L1 # L2 the best test of the
class K for a particular alternative is in fact an optimal test in the
wider class of nonparametric-type tests.

In Section 5.3 we concentrate on constructing tests which should be
especially powerful against parametric alternatives which can be reduced to

a location family after a suitable transformation, i.e.
n n n n
Fi(x) = W(g(x)+9i) 91 # 92,

where ¥ is a fixed continuous distribution function on (-*,®), g is a fixed
monotone transformation and e? and 6; are real parameters. We determine the
best test of the class K for given ¥ (we shall have to consider random
weight functions which are not necessarily nonnegative). It turns out as
expected that such a test is asymptotically most powerful if and only if
the limiting average censoring distributions for the two samples are equal.

As an example, when Y is the standard normal distribution function and
there is no censoring, this procedure supplies us with a new non-parametric
test statistic, which is asymptotically uniformly most powerful and which
unlike the test statistics of Fisher-Yates or Van der Waerden can be used
with censored observations as well. We give conditions for asymptotic
normality of this test statistic which cover the case of no censoring.

Le Cam's theory of contiguity is very useful in this section, allowing
us to evaluate limiting distributions only under the null-hypothesis in
order to determine efficiencies with respect to the likelihood-ratio test.

In Section 5.4 we pay attention to the question of how two-sample
tests can be constructed which are consistent against a wider class of
alternatives than those considered in Section 4.1. Since for a given random
weight function K we can use W(s) as a test statistic for any value of s,
it seems worth considering whether a test can be based on fgpt] |w(s) |

sel0,

for some chosen t. It turns out that such a test is consistent against the
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alternative F, # F, on [0,t]. One would expect to pay for this by a loss of
power against an alternative to which W(t) is suited. However we indicate
that for an alternative of the ordered hazards type, and for small values
of the size o of the tests, the two tests are asymptotically nearly equal-
ly powerful: the limit as size a + 0 of their Pitman asymptotic relative
efficiency (which depends on o) equals 1.

All this time we have made no comparison of the two null hypothesis
variance estimators V1(w) and VZ(W) (see (4.1.20) and (4.1.21)) and unfor-
tunately there are reasons for preferring either. Under the null hypothesis
we would expect V2(m), which in effect combines the two samples in order to
estimate G, to be a better estimator of the asymptotic variance of W(w).
However this same fact leads to extra difficulties and sometimes extra
conditions in dealing with Vz(w) both under contiguous and under fixed
alternative hypotheses, and this suggests that its convergence in probabil-
ity as n + © might be slower in such cases.

Under the null hypothesis or a contiguous sequence of alternatives,
Vl(w) and VZ(W) generally both converge in probability to the asymptotic
variance of W(»). Under a fixed alternative they have different limits; and
other things being equal one would prefer the variance estimator with the
smaller limiting value.

Suppose then that F? =F, ag@ Fg = F, for all n, where F, # F,. Suppose
as usual that for each i = 1,2, E% converges uniformly on [0,») to a func-

i
tion y; as n -+ ®, in probability. Define
I = {t: ¥y (D) Ay, (8) > 0};

we shall have I = [0,u] or [0,u) for some u € (0,»] and G, and G, are

finite on I. Suppose also that

n,+n, TPy € (0,11 asn~-«

and that for each t e I,

n,+n
1

n,n : K

172
converges uniformly on [0,t] to k as n -+ ®, in probability, where k is left
continuous with right hand limits and k of bounded variation on [0,t]. We

define k = 0 outside I. Writing



104

AN, -1y 4N,
2 ni. n1+n2 2 n, i i . .
V=Z _"K'T'l"Y-l v (i' # 1)
1 i=1 n1+n2 n1n2 i i i
and v o % ny {(“1”‘2 K2>
2 i=1 n1+n2 oo,
- an
] ni' (1 Yl AN1 Y2 AN2 1> i i £ 1)
- - - - Y
Yi' Y1+Y2 1 Yl ¥, 4y, 1 Y2 i

(see (4.1.20) and (4.1.21)) it follows by (4.1.15) that in probability, V1

and Vv, converge uniformly on [0,t] to the functions

2 2
K°, v g
(5.1.1) .2 Py Jy.(l 4G,)dG, (i' # 1)
i=1 i
and
2 2 p,y,0G, + p vy, AG
(5.1.2) ZQiJk 1—111+222)dGi (' # 1)
i=1 Yy P1¥y * Pa¥y

as n + », for each t ¢ I.

Under some further conditions (compare the use of Conditions II and III
in the proof of Lemma 4.2.1) this also holds with the interval [0,t] for
t € I replaced with [0,2]. The interesting point however is that the two
functions in (5.1.1) and (5.1.2) are not necessarily equal, and it is not
true that one of them is always greater than or equal to the other. Thus a

general choice between V1 and V2 cannot be based on these considerations
either.

5.2. Efficiencies

In this section we apply Theorem 4.2.1 to the two-sample situation in
which for each i

(5.2.1) F‘i‘(t) + F(t) uniformly in t € [0,®) as n - @

for some fixed distribution function F, with respect to which FI; is abso-

lutely continuous for each i and n. We suppose that this convergence is
such that for some real valued functions Y.r
i

nln2 dG;:1
(5.2.2) W(—aa—(t) - 1) - Yi(t) as n >

uniformly on each closed subinterval of {t: F(t-) < 1}, and we define

(5.2.3) v =7y, -v,.
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(In Section 5.3 we shall weaken these assumptions somewhat.) At the same

time we suppose as in Section 4.3 (see (4.3.7) and (4.3.8)) that

Y. (t)
(5.2.4) + y; (£) uniformly on [0,#) in probability
i
and
B
(5.2.5) n,An, + =, ny e, >, € 0,11

for each i as n =+ «», Define
(5.2.6) I = {t: yl(t)Ayz(t) > 0}, u = sup I.

From the remarks preceding Theorem 4.1.3 on page 66, we recall that the
functions y; are such that yi(1~—1=’_)—1 has all the properties of 1 minus
the left continuous version of a (sub)-distribution function: it is left
continuous, nonincreasing, nonnegative, and takes the value 1 at time zero.
In Example 4.1.1, if (4.3.9) holds, then yi(l—p_)”l = (1-L;), i=1and
2, where Li is the limiting average censoring distribution for sample i.
However even when we are not in the situation of Example 4.1.1, we propose
defining the limiting average censoring distribution Li by (1-Li_) =
-y, a-r)h
Finally let XK € K be a random weight function for each n, generating
a sequence of test statistics W(w)/vgzjzﬁ (cf. Section 4.1, especially

(4.1.18) to (4.1.21)), such that

n1+n2

172

(5.2.7) K(t) -+ k(t) uniformly on closed subintervals of I

in probability as n + «, where k is left continuous with right hand limits
and k+ of bounded variation on closed subintervals of I. Define k = O out-
side I. We call k a "limiting weight function”.

As a consequence of (5.2.1) to (5.2.7), writing

[ o o
= | = - = - - - 1)dG
sae we | S [ ey [ (i - [ (2
1 2
(here M, = N, - f Y.4G") and letting for i = 1 and 2
i i i77i

(5.2.9) H; = K/Yi,

then we have
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n,, n, nin
T e et ST
e iy T S k)

and Condition I of Section 4.2 holds with

(5.2.10) hi=—‘—k '

so that

.Y, *PY

1 22 2

(5.2.11)  h,+h sl 22,2
1 2 ¥1Y,

Note that condition (4.3.3) of Lemma 4.3.1 is a consequence of (5.2.2).

If also

t
(5.2.12) J [kyildG <w foralltel and i=1,2,
0

then by (5.2.2) and (5.2.7),

Js <dG? s
Kl = - 1>dG - J ky. 4G
0 4G 0 i

(5.2.13) sup

+~ 0
SE[OIt] F

for all t € 1 and each i = 1,2. We can extend (5.2.13) to t = u and then to

t = ® in the usual way by making the extra assumptions

*
11 If u ¢ I, then for i = 1 and 2
a) II ]kyi‘dG < @

b) lim lim sup P(I[t u]lKHdG:—dGI >¢) =0 for all e >0
r

thu o
and
*
III if u < «©, then for i = 1 and 2
n
f(u’m)IKlIdGi—dGI “p 0 asn -~ e,

By Theorem 4.2.1, Lemma 4.3.1, and (5.2.13) we therefore have if

(5.2.1) to (5.2.7) and (5.2.12) hold
t ey tey, 5
kydG, J =1 2., (1_AG)dG>

(5.2.14) W(t) -»DN(J
o ¥i¥p

0

for all t € I and Vm(t) is a consistent estimator of the asymptotic vari-
ance in (5.2.14) for 2 = 1 and 2. If u ¢ I but Conditions II, II', and
(for the case 2 = 2) (4.3.4) hold, this is also true for t = u; and if
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u < « but III, III* and (for the case £ = 2) (4.3.5) hold too, then it is
true for all t ¢ [0,=].

Suppose we are interested in some parametric family of distributions,
and select a sequence {(F?,Fg): n=1,2,...} of pairs of distribution func-
tions from this family such that (5.2.1) to (5.2.7) and (5.2.12) hold for
certain functions k, Yy ¥y and Y. Suppose that under the null-hypothesis
sequence Fy = Fg = F for all n, (5.2.1) to (5.2.7) and (5.2.12) hold with
the same k, ¥y and Y, but with y = 0. Then under the appropriate set of con-
ditions, the asymptotic relative efficiency (for this sequence of alterna-
tives) of one test statistic W(t)/VGZT;B with respect to another is given

by the ratio of their efficacies

(S 1vac)”

PY, T PY
(J't ‘—1"‘]:'——2'—2‘k2(1—AG)dG)
0 ¥y

(5.2.15) e(k,t) =

the efficacy of such a test statistic depending on its limiting weight
function k and the time instant t for given Yqr Yor Y and G.

Recall from Chapter 4 that for the test statistics of GEHAN, EFRON
and COX, (5.2.7) holds with

(5.2.16) k. = ¥1¥,

G
(5.2.17) k_ = (1—F)2
2. e = _ XI
and
Y.¥
(5.2.18) k, = 172

C ey v ey,

It is a straightforward matter to extend Propositions 4.3.1 to 4.3.3 to
cover the contiguous alternative hypothesis case. In particular Lemma 4.3.2
remains valid under (5.2.1). However we shall not go into these details
here, nor discuss conditions for II* and III* to hold.

The following lemma establishes that

Y
k e« on [0,t]
p1y1+p2y2 1-AG !
maximizes (5.2.15) over the function k. Note that with such a choice of k,
the terms corresponding to asymptotic mean and variance in (5.2.15) are

equal to one another and hence also to the efficacy itself.
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LEMMA 5.2.1. Let t € (0,«] be fixed and define

0.+ P,
8= —2 224 _)5) on [0,t].
¥1Y,

Suppose

Then if almost everywhere (dF) on [O,t]
k « E where B # 0,

k maximizes e(k,t) over all k such that

t o2
0 < J kTBAG < =,
0
PROOF. We can equivalently maximize e(k,t) over all k such that the
denominator in (5.2.15) f; kZBdG is fixed and equal to a > 0. The theory

of Lagrange multipliers then leads us to consider the problem of maximizing
t t 5
[ s - o[ sas o)
0 0

over all k, for some fixed A. Bringing the integrands under a single
integral sign and maximizing pointwise, assuming A > 0 this problem has

as solution

w
]
™=

where 8 # 0.

N}
Df=

By the assumptions y = O where B = 0 almost everywhere (dF), so we can neg-
lect the case B = 0. Since for a fixed A > 0 we can choose o # 0 such that
t 2 . . .

IO k"BdG = a with this choice of k, the same k is the solution of the con-

strained problem. [J

Now ¥y and ¥, depend on the limiting average censoring distributions,
which we may consider as arbitrary. So by Lemma 5.2.1, a test statistic in
K with limiting weight function k can only be "optimal relative to y" (in
the sense of maximizing e(k,t) for the appropriate t) if k(plyli-pzyz)/(ylyz)
is proportional to \((1-'AG)._1 and so, apart from a constant of proportion-

ality which may depend on Ly and Loys only depends on F and y. This shows that
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the test statistics of GEHAN and EFRON will only be optimal relative to Yy

when special relationships hold between vy, F, L, and L i.e. under special

1 2}
limiting average censoring distributions. We shall come across some cases
of this later. However the test statistic of COX is "optimal" if Y(l-—AG)_1
is constant almost everywhere (-dG) except possibly where AG = 1.

We shall show that this case arises if

1 1

(5.2.19) (1—AG§L‘)‘ dG’i‘ = 6;_1(1—AG)_ 4G, i=1 and 2,

(i.e. a proportional odds model) where

n

n _ 2
(5.2.20) 8, =1 +c W
(5.2.21) 6% =1 -¢ e S
2 n2(n1+n2)

for some ¢ # 0. Special cases are the geometric distribution and the Weibull
distribution (with fixed shape but varying scale parameter); the latter in-
cluding the exponential distribution. Under (5.2.19) to (5.2.21) we have,

for i = 1 and 2,

(1-a6)a6"™ = (1 - ac™ as
1 1 1

]

= ac” -ac = (87-1)ac - o"ac"dc + acdc”
1 1 1 1

n
i

il

n n n
(6i~1)dG - (8;,-1)AG,dG

-ag?
= 2 _ 1

aG

n n
(Bi—l)(l—AGi).

nqn o)
So as n > «, /;l?*l-_-ﬁ-zz-(%%-— 1) converges uniformly on [0,t] to p,c(l-4G) or
—plc(l-AG) according to whether i = 1 or 2, if t satisfies F(t-) < 1. Thus

(5.2.2) holds with
(5.2.22) Y=Y ", = c(l-AG).

In Figure 5.2.1 we plot e(k,t) for k = kg, kE and kC as functions of t

in the case that
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- -6%t
Flt) = 1-€ 5 Fi(0) =1 -e

L (8) = L,(t) = 1 - et azxo0;

<
]
(o]
[}

1; pi arbitrary,

for various values of a; o measures the degree of censoring present. These

plots are time transformations of the more general case F continuous,

of o
1-F‘i‘=(1—p) Y,o1-n =1-1,=0-0% ¥

it
Q
i
-

Note that the test statistic of EFRON is "accidentally" optimal at o =1
when kC = kE' and that e(kE,t) is near zero for large t for a 2 3, when
(4.3.18) fails. Again, the advisability of "stopping" the test statistic
of EFRON earlier than the last observation is apparent.

The fact that

1

- -1

ac”
&G ‘ -

e’.‘—1l
1

makes it very easy to verify, under Hl’ Conditions II, II*, III, III*.
(4.3.4) and (4.3.5) for the test statistics of GEHAN, EFRON and COX in
suitable modifications of Propositions 4.3.1 to 4.3.3; we omit the details.
We now compare the test statistic of COX with the most powerful test
for this problem. In the model specified by (5.2.19) to (5.2.21), let us
suppose that for each n, the likelihood-ratio test statistic based on the
n

. ~n .n . n
b: t . = = ; . = =
observations (xij’Gij)' j 1, ,ni, i 1,2 for testing HO' F1 F2 F

(i.e. c = 0) versus le "¢ is fixed and non-zero" is of the form given by
Theorem 3.1.2:

(5.2.33)
ap 1-AG i’n! n -F mj
dpl ] ) &) dGi(xm - 1-F] ()
0 . .:6{1.7-1 1= n sn aG i] N _ on
i,3 i3 AGi(Xij) i, j 1 F(xij)

[}

hit en I {( I_AGI;:(S) n n ~n
. I ——— - - ~
i,j:62j=1 i 15 sﬁ‘ij 1-3G(s) exp((ei 1)AG(s))>exp( (Gi 1)G(Xij))}.

Here we have used (3.2.9) and the fact that by (5.2.19)
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Efficacies e(k,t) with k = kc, kG and kE; F(t) = 1-exp(-t);
v = 1 (Lehmann alternatives); and 1—Ll = 1—L2 = (1- F)a
e @
N c 0.5 C/E
0.75 E,G 0.37 [/ G
0 rt 0 —T*
: a=0 4 0 a=1 4
e e
0.33 c

0.29 ¢
E K
0.25 ¢ 0.214- ¢

0.13 1 TTTTTmTTTTTTTTTT

2
"
N
=
o
e
Ll
~
w
3

o

G 0.15 G

ot

0.25 I c 0.20 ¢
//(
o

= 4

R
¥
w
»
o
”
w4

Figure 5.2.1.
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t t
n n n

<] () + 6 (0) = J (d6,-d6] ) = - J (67 -1)d6,

0 0
= -@%-1G) + ] (67-1)4G(s).

* sst *

Thus
®, 2

[

1
(5.2.24) log dPO

n n
121 (Ni(w)log &, - (8;-1) E Y,dG + Bi)

2
n
= '2 (Log (8,)M, (=) = A +B,),
i=1
where Mi = Ni - f YidG as we are working under HO' where
! . 1 - 46} (s)
(5.2.25) Bi = .z Z»n{(ei—l)AG(S) + log(I—jj7§;a;7>}
j=1 s<x2;
1]
and where

00
n n
((ei—l) - log Gi) Io ¥.dG.

(5.2.26) A,

We shall show that under HO, and under (5.2.4) and (5.2.5), the fol-
lowing relationships hold (all limits being taken as n =+ «):

00

2 o
(5.2.27) 1og(e’ilmi(oo) ) N(O,c O J yi(l-AG)dG> (1" £ 1),

0

. n
with log(el)Ml(w) and log(eg)Mz(w) asymptotically independent,

2 @
(5.2.28) A, > o, [0 v, 4G,
and

C2 ®
(5.2.29) B, =, S0, J v, 464G,

0

so that under (5.2.23)

ar
1
(5.2.30) log ESS-+D N(—%czcz.czoi)
with
2 {--]
(5.2.31) op = Io (p1y2+-p2y1)(1-AG)dG

(L standing for likelihood ratio):
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THEOREM 5.2.1. Suppose that (5.2.4) and (5.2.5) hold. If the likelihood
ratio for the alternative hypothesis H1 specified by (5.2.19) versus H, is

0
given by (5.2.23), then under HO (5.2.30) holds with ci defined by (5.2.31).

PROOF. We first establish (5.2.27) and the asymptotic independence of

log(e?)Ml(w) and log(eg)Mz(w). We shall continually use the expansion

log(l+x) = x - 52——+ 0(x3) as x -+ 0.

Thus we can write

n N .
1og(eri‘mi(m) = :c(1+0(n;;’)) rn 5 am,, i' # i,
0

and we now apply a version of Theorem 4.2.1 with Hi = nf’. Let us define

Ii = {t: yi(t) > 0} and u; = sup Ii' As was remarked after the proof of
Theorem 4.2.1, the theorem also holds with I depending on i if the conclu-

sion is modified appropriately. With the interval Ii
Hi = nj’ and hi =Y Conditions I and IIa follow immediately. Condition

ITb also holds because if vy ¢ Ii’ then by Lemma 4.3.2

in place of I, with

Y,
J HiYidG = J n—l-dG > J v,86 + 0
(t,ui3 (t,ui] i (t’ui]

as t + u, while similarly Condition III holds because

Y,
J H?YidG = J -—l-dG —>P 0 as n > «®,
(a, =) * (u, =) i

Next we consider Ai. By the expansion for log(l+x) given above, we

have

? L c
A, = 5(1+0(n,") J —=d4G —p..ry.dG
i 2 i n, +n, 0 i 0

by Lemma 4.3.2.
Finally we prove (5.2.29). By the arguments just after formula (5.2.21),
successively substituting for (1- AGE)/(l - AG),

1- AGIi1 AGIi‘—AG R 1 --L\Gri1
TTac - '~ T - ! - 816 735
1-46"

2—-———=
1 - 4G

n n 2
1 - (Gi—l)AG + (ei—l) (AG)
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1]

1 - (92—1)AG + (e’i’-l)z(AG)2 - (8

Thus by the expansion of the logarithm, as n
n 1_.AG2 n 2
(ei—l)AG + log(z—:fza) = %(Gi—l) A
and hence
2 00
B, = %(687-1) I Y. AGdG (1 + O(|6”
i i i i
0
C2 n,, © Y B
= S j —= 4G&G (1 + O(n]
PRy Jo By
2 o
a = J AGAG
P2 Piv] Y3

0

using Lemma 4.3.2 to extend convergence of Ig

t 0

o

.

Now we have already shown that under Ho

and ITI for the test statistic of COX we have
(5.2.32)  W_(%) », N(0,0%)
c D "¢

2
-, G

(5.2.33) » %

Vcl(m) 2 1 or 2,

while under Hi

2 2

(5.2.34) Wc(m) *p N(ccc,cc),

where
© y,y

(5.2.35) o2 = J —2 (1 _serce.
o P1¥1TPy¥y

Now by Le Cam's first lemma (see e.g. HAJEK &

(5.2.32) imply that (5.2.33) also holds under

(4.3.4) and (4.3.5) under H1

(5.2.30) implies that under H

for the case %

1

n n 2 2 n_ 3
1 - (ei—l)AG + (Si-l) (AG) (6i 1)

*
and the Conditions II, III, II

n
1 - AG
AGT

P_1)3 (a6 ?
1

6
i

>,

6 + ag? 0(Je?-1]%)

-1

12))

as n » <«

¥y
—= AGAG for t € I, to
ny i

and under the Conditions II

*
and IIT we have

vV -
SIDAK (1967)), (5.2.30) and
Hl’ so we need not verify

2. By Le Cam's third lemma,
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dap
1

log &= *p N(%czci,czoi) .
0

So under H,,
dp
-1 1 2.2
(cop) (log 355-+ Le GL> D N(ch,l)

and

under H0 the same relationships hold with limiting means zero. Thus the

efficacies of the test statistic of COX and the likelihood ratio test are
czcg and c or respectively, and hence the asymptotic relative efficiency of

the former with respect to the latter is given by

_ -1
[0y v0.97h (1 -ne)ae
1P Yy *PYy

2
£ _
2 Pyt oy (1 - AG)AG
L 0'P1Y2 T PoYy

Now on I

(0. y405.) S PO S 2 T N
1Y otPo¥y) (Pyy,y TR,y T) = pY + 00, (¥,Y, Y,V 0

-1 -
L+ 010, (y1y, +vyyy -2

Y
2
1+plp2/:-f > 1.

COROLLARY 5.2.1. The test statistic of COX is asymptotically most powerful

This gives us

against the alternatives (5.2.19) if and only if pi = 0 and yi = 0 outside

1 almost everywhere -dF where AG < 1 for i = 1 or 2, or if Yy =Y, almost

everywhere -dF where AG < 1.

This behaviour can be intuitively understood as follows. Under the

simplest type of censoring, Example 4.1.1 with L for all i, j

i © Xlu,,
and n (Type I censorship in each sample apart), the resuit states that if

Py € (0,1) we have efficiency 1 iff u, = u,. Both the likelihood ratio test

9°
(for which F must be known) and the test based on the test statistic of COX

n
can be thought of as comparing estimates of FT and F2. 1f v, < Usr the test
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statistic of COX only uses the information of what happens on [O,ulj;
because F being arbitrary, the available information about Fg based on what
happens in (ul,u2] is of no use. However the likelihood ratio test statig-—
tic, for which F must be known, can use the information of what happens in
(ul,uz] to improve its estimate of Fg (via an improved estimation of 02)

. n
and hence make a better comparison of F1

and F,. What is remarkable is
rather the fact that if u1 = u2, both tests are asymptotically equally good.
We suggest that this behaviour is inherited by more complicated types of
censoring; since the asymptotic results only depend on the limiting average
censoring distributions, which might just as well have come about from the
censoring of Example 4.1.1 with ng = X[ug.l' L) " a mixture of the type that
has just been considered ~ this is hardly surprising. We see too that this
behaviour should not depend on the special alternative hypothesis considered
here. In a slightly different context AALEN (1976) sketches an application of
results in LE CAM (1960) which shows that even if ¥y #y2, the test statistic
of COX is asymptotically uniformly most powerful against Lehmann alternatives
in the class of asymptotically similar tests. Here F is considered as the
nuisance parameter so that intuitively speaking the classes of similar tests
and nonparametric tests coincide. The method of proof can be adapted to our
situation, and also applies to the optimal tests of the class K discussed in
the next section.

Finally we note that under (5.2.23), we could also have derived
(5.2.34) by considering the joint asymptotic distribution of log ;;(1)— and
WC(°°) , and then applying Le Cam's third lemma. Since both statistics can
be written as stochastic integrals with respect to M1 and M2 (apart from
the terms in log a—él which converge in probability to constants) this is a
perfectly feasible approach; we could apply the Cramér-Wold device and con-
sider arbitrary linear combinations of [ YE— aM, with n:EMi. i=1and 2, in

order to be able to use Theorem 4.2.1. We shall use an argument along these
lines in Section 5.3.

5.3. Optimal tests of the class K for parametric alternatives

We saw in the previous section that the optimal test statistics of the

class K for testing against a contiguous sequence of alternatives for which

(5.2.2) holds has limiting weight function

Y ¥1¥,

k «
1-AG Dlyl-l-p

2¥2
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and hence efficacy (when the test statistic is evaluated at time t)

t 2 v,y
elk,t) = [ e
0 P1¥TPoYy

(We suppose throughout this section that (5.2.4) and (5.2.5) hold.) Now
suppose that {Fe: 0 € 0} is some family of continuous distribution functions
on [0,») indexed by a parameter 6 taking values in a real interval 0. We
write as usual G6=-{(1_F6)-1dF6' Suppose the distribution functions under

alternative and null hypothesis Fi and F of the last section are such that

n
= i =1 = PR
Fi Feg i 12, n 1,2

(5.3.1)

F =F
e0

for some 6 and 6? € 0. If F, has a density f

0 6 5}
= fe(l—}?‘e)'1 with respect to some o-finite measure p, it is easy to see that

and hazard rate Ae =

(5.3.2) :E;(t) = dGe (t) = Ae o
0 0

Therefore, defining yi by (5.2.2) if the limit there exists (even if con-

vergence is not uniform), if for some fixed c # 0O

n,,
(5.3.3) eni =8 tc [————— i' #1i, = (-1)

i+l
. ’
0 ni(n1+n2)

and if Ae(t) is differentiable with respect to 6 at § = 6 . for u-almost

0
all t, then

3
Yi(t) = icpi, 33'109 Ae(t)

6=60

and (cf. (5.2.3))

Ll
(5.3.4) Y(t) = Yl(t)'-Yz(t) =c 35 log Ke(t) oet
0

for p-almost t.
This suggests we should try to find test statistics in K for which

ni+ny
K converges under H_. to
nln2 0

(5.3.5) k = _;_)__ log A ___Y.l_iiz_.—
28 6 6=8, P1¥ T PyY,
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whatever the value of 6_ or the limiting average censoring distributions

0
L1 and L2; such a test statistic should have efficacy
o 2 ¥iY
2 3 142
(5.3.6) e(k,t) = ¢ J ( log A ) —— dG
o8 ®le=s / P1¥17P2Y

and be optimal in K for the family {Fe: 6 € 0}.

The following proposition shows once more that such a test statistic
will only have a Pitman asymptotic relative efficiency of 100% with respect
to the most powerful test against the alternatives specified by (5.3.1)
and (5.3.3) when either ¥y = ¥y OF for i = 1 or 2, Py = 0 and v, = 0 where
Y0 = 0 (i' # 1):

PROPOSITION 5.3.1. Suppose that F? and F are given by (5.3.1) and (5.3.3),
that log dPi/dPo is given by (3.1.8) for each n, and that (5.2.4) and

(5.2.5) hold under H,. Suppose also that ;L log )\e(t)lS 8o exists almost

0
everywhere —dFeo(t) and that
2 28-1¢, 2d.F ® 7 2
(5.3.7) lim J ( ) 6 = J (—— log A > ar < o,
g+6 Jo wr 8 =8/ o Jo\%® ®6=0 ®
0 60 o]
Then under H0
dP
2 2 2
log —— dP ) N(-%c 0 ,C OL)
where
02 = Jm ( 9 A :
L Pyt PoYy)5g 109 A dGg < .
0 6=60 0

PROOF. Since Fe is continuous for all 6, by (3.1.8) and (3.2.9) we can
write

dPl
(5.3.8) log ——
dP0

L}

-JG.an (Xt -6 &‘.“)))
5 Bi ij 90 ij

L}

]



Here Mi is defined by Mi

HO. Let us define

and

=ne

- o .

i dMi
Note that almost surely,

- 2
n 2
L eazls® = J ( an, .
se[0,) 0

With continuous F, M, and M, never jump simultaneously and [8ug)|AMil < 1.
7

So {Z?E: i = 1,2} forms the jump part of an e-decomposition of {Z?:i.=1,2},

and by Theorem 2.4.1 (making use of (2.4.9) to deal with the last two terms

of (5.3.8)) it suffices to show that

(5.3.9)

for all t € [0,«], that

(5.3.10)  <z"€,ZP&5 (@) =J (2(
1 1 0

for all € > 0, and that

(5.3.11) J (log
0
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all as n -+ ®. Now finiteness of the right hand side of (5.3.9) follows from
the finiteness assertion in (5.3.7) since yidG < dF. By the equality
2 ! -2
log x = (x-1) - %(x-1) J 2(1-z) (1 +z(x-1)) "dz
0
(this equality is used in the proof of Le Cam's second lemma, see e.g.

HAJEK & SIDAK (1967) page 206), (5.3.11) is equivalent to

——i—1>> zdz]dNi >, 0 asn o+,
Let us assume that (5.3.9) and (5.2.10) hold, so that by Theorem 2.4.1 the
martingales z? = 2(/i;§7ig; - 1)dMi converge weakly in D[0,*] to a con-
tinuous limit as n - ®, It then follows that the suprema over [0,»] of

the absolute value of the jumps of these martingales converge in probabil-

ity to zero; i.e.

sup
[0,=]

On the event where this supremum is less than ¢, the left hand side of

(5.3.12) is smaller in absolute value than

So under (5.3.9) and (5.3.10), (5.3.11) holds if

(x)

is bounded in probability as n -+ =, But this also follows from (5.3.9) and
(5.3.10), because then as we remarked earlier by (2.4.9), (%) converges

in probability to the (finite) limit in probability of

It suffices therefore to verify (5.3.9) and (5.3.10). Now by the well-
. . Vo -
known H&jek lemma (HAJEK & SIDAK (1967) page 154), (5.3.7) implies that
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}\‘:_)\’:
2 % 8% 2
J (-§—~—§:6—— - gg'log Ae > ar -+ 0 as 6 ~ eO'
0 )\9 0 6=0
0
0
We can rewrite the left hand side of (5.3.9) as
5 %

n,, (t Agn=hg 2 Y,
2 i J(z__L_% ioge

Pty JoME o gty /oy

9O

By VAN ZUIJLEN (1978) Theorem 1.1 and Corollary 3.1, for given € > 0 there

exists B € (0,1) such that under HO’

Y -1
P(—S 8 "(1-F) on [O,w)\) > 1-¢
i
uniformly in ni. Let § > 0 and s € (0,®) be fixed. On the event where ﬁi <
- Y i
<R 1(1—F) and sup]f—yil < § we have, for any t ¢ (0,«],
i

A~ 2
t ( en “g Y, t 2
f : . 0) - J (a )
o — ] * a4 - < 1og A v.dG
0 Az 67 -9 By o \o¢ ele=e .
i 0 0
O Tk %
JsAt( 2 62 [¢] SAt 2
< —— y.dG - J (—— log A ) y.dG
0o W el . o \98 ®lo=e / 71
¢} i 0 0
0 aE o
SAt 6 g
$ {2 i 0 4
1-F(s) \,¥ .n
0 Mg o8-8,
1o} 1
]
t Agn=hg (2 t 2
-1 2 i 0 3
+ B ) &+ 75 1og 2g ar.
SAEMA 67~ SAt 6=0
6, 170 0

If s is chosen large enough subject to F(s) < 1, the last term is arbitrar-
ily small and the last but one term converges to an arbitrarily small
quantity as n - «, The first term converges to zero as n + ® (convergence
in L2—norm implies convergence of L2-norms) . The remaining term, involving
§, converges as n + « to an arbitrarily small quantity if § is chosen small
enough. Since € was arbitrary and P(sup{%—yil <48) 1 as n~+>», (5.3.9)
holds. The relation (5.3.10) can be esta.bliished in exactly the same way

since
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+0asn-=+=, [0

The above proof is very similar to the usual proof of Le Cam's second
lemma. For instance, the proof of asymptotic negligeability of the remainder
terms in (5.3.8) (i.e. proving that (5.3.11) holds) uses a consequence of
asymptotic normality of the leading term; the same argument is used in
Le Cam's second lemma too.

By Le Cam's third lemma, under the conditions of Proposition 5.3.1 we

have under H 1

ar
log a—P—l—- *D N(‘zczc

2
0 L

and hence the efficiency of the optimal test in K (whose efficacy is given

by (5.3.6)) relative to the most powerful test against H
® 2 vy
3 142
[(Zorn Vo
0\8 ele=e(J P1Yy*PoYy

2
3
r(ae log )‘6 ) (p1y2+p2y1)dG
0 =8,
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with equality when ¥ =¥,r OX for i =1 or 2 ;::i = 0 and v, = 0 where Yin =0.

However it still remains to show that a test statistic in K can be
constructed for which (5.3.5) holds and hence (5.3.6) does too. We shall
only do this in the special situation in which
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(5.3.13) Fe(t) = ¥(g(t) +8) t e [0,=), B € 0= (=),

where g is a fixed continuous nondecreasing function from [0,«] onto
[-=,»] and ¥ is a fixed continuous distribution function with positive
density ¢ on (-»,%), such that §', the derivative of y, exists and is con-
tinuous at all but finitely many points. We define A = y/(1-¥) and

% = log XA, and note that

(5.3.14) LY = (W' /Y) +

exists where y' does. We suppose that except possibly on arbitrarily small
neighbourhoods of at most finitely many points of [—,»], &' is of bounded
variation on [-®,~]. Finally we assume that according to some convention,
%' is assigned finite values in the points #® and the points where y' does
not exist.

The family defined by (5.3.13) might be termed a "time transformed
location family". In fact 6 is minus the location parameter for ¥; the
reason for this choice will become apparent shortly.

Now Fe is continuous and has density Y(g(°) + 8) with respect to thg
o-finite measure generated by g. Hence it has hazard rate Xe = A(g+8)

with respect to this measure. Since

) , P |
75 Llog Ae(t) = 2'(g(t) +8) = &' (¥ (Fe(t))),

in the hope that (5.3.5) holds, we define a test statistic in K by

n.n Y, ¥ _ n +n
(5.3.15) K = Ko e = 1+2 g'(w_l(f- ))_1._2._1___2_,
P n,+n, =y n2 Y1+-Y2

where F is the product limit estimator of F, based on the combined sample.

8
Possible alternatives could be to replace F in (5.3.15) with F= (nf+1)/(n+1),
with (n1§1+n2§2)/n, or with (nlf
(5.3.15) is that if g(t) + 60

2", and if yl(t) > 0 and yz(t) > 0, then under H

1+n2f‘2+1)/(n+1). The justification for

is not one of the points of discontinuity of

0
n,+n v, (t)y,(t)
1772 -1 1 2
K __(t) = *'"(¥Y "(F, (©)))
nn, “opt P % Py, (B) + ooy, (1)
yl(t)yz(t)
= 1 (g(t)+eo) °1Y1(t)+°2Y2(t)
v, (Bly, (L)
P 1 2
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In fact we have, in probability, uniform convergence on each compact inter-~
val on which 2'(g+ 90) is continuous and ¥y and v, are positive. The same
holds for any of the alternatives to (5.3.15) mentioned above.

Let us note some other consequences of this definition. Firstly, Kopt
is predictable, because Yl' Y2 and F_ are. Secondly, it is bounded, because
for each n, f‘_ takes on values from some finite set of values and hence K°
does too. Thirdly, neither 60 nor g enters into the specification of Kopt'
as we required. Note that we need to define &' in the point -« because
‘l’—l(f‘_) = -» at the first uncensored observation. Ko £ is not necessarily
nonnegative. However in cases in which shifting Y to the right decreases the
hazard rate everywhere (such a shift can never increase it everywhere), 2'
is nonnegative. This is why we chose to have +6 instead of -6 in (5.3.15).
The following examples all have %' nonnegative and nonincreasing, which
means that the resulting test statistics are members of K+ and hence should

be consistent against alternatives of stochastic ordering (see Lemmas 4.1.6
and 4.1.7).

EXAMPLE 5.3.1. Extreme value distribution (smallest extremes) of Type I.
x
¥(x) =1 -e° "

We find A(x) = e* and 2'(x) = 1, so that Kopt becomes simply KC, the weight
function for the test statistic of COX. This relationship is a reflection of

the optimality of the test statistic of COX against Lehmann-alternatives,
n

n 0Li
(1 —Fi) = (1-F)

when F is continuous. For in this situation

&
#

n
S 1 - exp(ai log(l-F))

¥(log(- log(1-F)) + log a’i’)

so that by taking g = log(- log(l-F)) and eri1 = log az we arrive at (5.3.13).

Lehmann-alternatives arise for instance if Fy is the exponential or Weibull

distribution with scale parameter log(1/8).
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EXAMPLE 5.3.2. Logistic distribution.

¥(x) = 1
-X
1 +e
Ax) = !
-x
1 +e
and
-x
BN = =1 - ¥(x).
1+e x
Making the natural definition &' (-»~) = 1, we obtain
Kopt = (1-—F_)KC.

When there is no censoring, we find that

and the three tests coincide with the Wilcoxon test based on the statistic
0 YZle - fz YldNZ' This is not unexpected: the test statistics of GEHAN
and EFRON were constructed to be generalizations of the Wilcoxon test,
which is asymptotically most powerful against contiguous location altexna-
tives with the logistic distribution. In Figure 5.3.1 we plot e(k,t) for
these alternatives in the same way as in Figure 5.2.1, including the new

optimal test statistic.

EXAMPLE 5.3.3. Double exponential distribution (Laplace distribution).

Bex x £ 0,
Y(x) =
1 -%* x=2o0.
We find
(1-%5"1 x <o,
M (x) =
0 x > 0,

so that defining 2'(—) = 1 and 4£'(0) = 2 we obtain

= (1-F )"

1 -
Kopt _ X[O,%](F—) KC.

The resulting test statistic bears little resemblance to the sign test with
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Efficacies e(k,t) with k = kC’ kG’ kE and kopt; F(t) = 1-exp(~t);

a
y = 1-F (logistic location alternatives); and 1-1L, = 1-L, = (1-F)

e
0.333 —G,EQ 0 25

& 0223 = C.E
0.250

[23e]

0 Tt 0 Tt
o =0 4 " 4
e =3
0.200 o 0.182 o
0.188 ¢ 0.173 c
0.148 & 0.164 Z. G
0.111 K E
E
0.056
0 rt 0 rt
o a =2 4 o] a = 2.5 4
° ]
0.167 o 0.14 0
0.160 c  0.13 c
48
o1 S o.12 f G
E
0 E
b " —t 0 .
a=3 4 4] o = 4 4'
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which it should share asymptotic optimality properties when there is no
censoring.

A similar optimal K is obtained if we take Fe to be the uniform dis-
tribution on [0,e °] so that

- e(log t)+6, £ e [O,e—el,

Fe(t)
and we can set g(t) = log t, ¥(x) = e on (~=,0]. This example conflicts
with our requirement that Y should be positive on (—»,«); however if cen-—
soring is such that with probability 1 all observations are less that some

80
fixed time u < e o1 for all i and n, the test statistic defined by
1

= (1-F) K

Kopt C

will have the expected optimality properties.
EXAMPLE 5.3.4. Normal distribution.
Y(x) = &(x)

where ¢ is the standard normal distribution function with density ¢. This
covers the case in which Fe is the lognormal distribution with parameters
1 and ¢ such % = -0 is the parameter of interest and o, unknown, is the same
in both samples (and hence can be absorbed into the transformation g). In

this example, by (5.3.14),

2'(x) = -x+ A(x),
where

A(x) d(x)/(1-2(x)).

[

It is well known that A(x) -—x is positive for all x and A(xX)-x + 0 as

X =+ ®; obviously A(x) - 0 as x > —», So &' is positive and &' (x) > « as

X > -», Rather than assign &' some arbitrary finite value in the point -,
it seems better to replace F in (5.3.15) with E = (nF+1)/(n+1), obtaining

o @)
-

-1 ~
K =|-% "(F) + ——
opt ( - 1 - E

The resulting test statistic has a completely different form from the test

statistics of Van der Waerden or Fisher-Yates with respect to which it is
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asymptotically efficient when there is no censoring. There is no obvious
way in which the latter statistics can be generalized to the case of cen-

sored data.

In a time transformed location family, Condition (5.3.7) of Proposi-

tion 5.3.1 is equivalent to

- L 3 2 o
(5.3.16) limj (52 A (x+8) - ) (x)) av (x) =J (21)2ay < «,

§+0 (%) s -

which can easily be verified for all the above examples. Note that

t 2
N 2ay = LA
L“ e L,(w o) e

() e - s
] 1 -¥()’
so that if lim w(t)z(l-W(t))— = 0, the limiting quantity in (5.3.16)
equals the ;z:her information for the location family {¥(*+6): 8¢ (—,»)}.

In proving asymptotic normality under the null hypothesis of the test
statistic based on Kopt’ the only essentially new difficulties occur when,
as in the case ¥ = ¢, an x € [—»,»] exists such that li?égupIZ'(y)l = o, (In
this case, the function k defined in (5.2.7) does not have the usually
required properties.)

In the following proposition, we suppose that x = - is the only such
point (if any exists at all); however the conditions can be modified in a
straightforward fashion to cover other cases. After this proposition, we
give a result (Proposition 5.3.3) on the joint asymptotic normality of
log gP; and W (w), from which the expected efficiency result is derived
(corollary 5.3.1). Then we continue the discussion of Examples 5.3.1 to
5.3.4.

PROPOSITION 5.3.2 (Asymptotic normality of W ( VALY lo t (o) under HO).
Let ¥, % and ' have the properties given after (5.3.13) and define Kbpt

by (5.3.15) or by one of the alternatives given immediately afterwards.
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Suppose that F? = F for all i and n for some continuous distribution func-
tion F and that (5.2.4) and (5.2.5) hold, and define

u = sup{t: ¥y (B)Ay,(£) > 0}. If for i =1 or 2 p; = O, suppose either that
yi(u+) = 0 or that for each n, Yl(u+)AY2(u+) = 0 almost surely. Suppose
either that &' has a limit in -» and is bounded on (-»,®), or alternatively
that &' is bounded on [x,») for each x > -,

(5.3.17) I R'2dW < o,

and

t

(5.3.18)  lim lim sup P(J’ vt E e s e) =0
t+40 n-e 0

for all € > 0 (with F replaced by one of the alternatives as appropriate).

Then the statistics defined in (4.1.18), (4.1.20) and (4.1.21) with

K = Kbpt satisfy

Y,Y,

-1 2
—_— (Y T (F))) dG)
Pi¥p +PoY,

(5.3.19) wopt(eo) *D N(o, Jo

and
ol ¥4¥,

-1 2
— (L' (¥ " (F))) 4G, 2 =1or 2,
0 P1¥1+Po¥s

(5.3.20) v%opt(w) 5 J

as n +» o,

PROCF. For each r ¢ N let B, < (0,2] be a finite union of intervals of the
form (a,b] such that l'(W-l(F)) is continuous and of bounded variation out-
side B and such that {Br: r=1,2,...} forms a decreasing sequence of sets
whose intersection is finite. In particular, Br contains a subintexval
(O,tr] where tr+ 0 as ¥ » » if 4' does not have a limit in —~, or is not
bounded on (—»,»). Let B; be the complement of Br on (0,®). It is easy to
check that Condition I of Theorem 4.2.1 and Lemma 4.3.1 is satisfied for

each r = 1,2,... with

K
BT ¥ X e
i Br
and
2
Psa y.¥ -
n, = = ———i—Z——) @ tmn, i=1anaz,
Yi Dlyl p2y2 B

with 1 = {t: yl(t)Ayz(t) > 0}. conditions II and III are also satisfied
because with probability converging to 1 as n =+ =, |K| < aKc on [t,») for
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some fixed a < @ and t < sup I; and the conditions of this proposition
ensure that II and III are satisfied for the test statistic of COX (see
Proposition 4.3.3, recalling that F is continuous). In the proof of Theorem
4.2.1, conditions I, II and III and the fact that F is continuous, are used
to show that the conditions of Theorem 2.4.1 are satisfied for each

r=1,2,... with [0,) replaced by [0,=] and with

rn K s
Zi =J§—.‘XBC dMl ’ i=1,2,

1 x
2§n€=I§-xcx 1% a, i=1,2;¢>0,

i B —|V|—| > g

ey,
and 5
0.0/ VY -

A’ =J L —-——1:-3—-——) @t ae, 1t A= 1,2
i v, \p,v, ¥ 0,7, 8¢

The conditions will also be satisfied for Zz, E;e and Ai defined by dropping

the factor XBC in the above three integrals provided that Ai(w) < « and
r

co

(5.3.21) lim lim sup P(J %:.XB aGc > n) =0
rHe e 0"i T

for all n > 0 and each i = 1,2. The finiteness of Ai(w) follows from (5.3.17)

by the fact that yidG < dF. Also (5.3.21) certainly holds if we removil(if

2' is unbounded) the interval (O’tr] from Br for each r, because L'(¥ “(F))

is bounded on the rest of Br uniformly in r, and because by Proposition 4.3.3,

(5.3.21) holds with K replaced by KC. Condition (5.3.18) is equivalent to

(5.3.21) with B, replaced by (O,tr]. So (5.3.21) holds in general. We have

now established (5.3.19). By Lemma 4.3.1, for each r the analogous result

to (5.3.20) with K replaced by Kng holds. But this result can be extended

to the required one by using finiteness of Ai(m) for each i, the relation

(5.3.21), and Theorem 2.4.2 exactly as was done in the proof of Lemma 4.3.1
to make the extensions from I to [0,u] and to [0,~]. [

PROPOSITION 5.3.3. Under the combined conditions of Propositions 5.3.1 and
. . dap
5.3.2, with {F,: 6 € 0@} given by (5.3.13), log ——l-and W (») are, under
] dp, opt
the null hypothesis, asymptotically bivariate normally distributed with a

squared correlation coefficient equal to
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w Yq.Y
1 -
I e T ) 2ae
0 P1¥17PoY

0 .

-1
Pavyroyyy) (27 (F))) a6

(5.3.22)

(Under these conditions, (5.3.7) can be replaced by (5.3.16).)

PROOF. For any real numbers a,f8 define

K
- 1) s EDS @ = et
i
and
__'__1>X
[
2 —_—1 ZE

K
+ 82'(‘1‘—1(F_))§—C- X c .
1dgrwte s &
T E DY 28}

For each (a,B) we shall verify the conditions of Theorem 2.4.1 with the

interval [0,®) replaced by [0,=] and with

Z%Bn J 28 am. in place of 2z,
i i i i
E?‘Bm’: = J H?‘BE @, in place of Z.°¢
i i i i
and
Y. Y 2 2
i i Yi 01Y1 szz

in place of Ai (i =1,2).

After this, the Cramér-Wold device gives the required result, with the

dP . 3
asymptotic covariance of log aﬁl-and W(») being equal to the coefficient of
8 af
2
already verified the conditions of Theorem 2.4.1 with (a,B) = (1,0) and

(a,B) = (0,1). The condition involving <§§Bn€,5:Bn£> is now seen to hold

0
2aB in A? (®) + A."(®). Now (in Propositions 5.3.1 and 5.3.2) we have

for arbitrary (a,B) by writing
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<qune'iqsns

s < 2a2<210n e/u'Z—%On 8/0L>

1

+ 262<521 n E/Bligl n E/B>‘

It remains to show that
€ ag.2 B
(5.3.23) <z 7988, (4 =J ®%®)%y ac » 2% (¢)
L 1 0 1 1 P 1

as n + o for each t € [0,»] and i = 1,2. In fact we shall show

t gt 1 - n, 2y,
(5.3.24) “azn‘.‘/ i 1)+ g v hE )t et x x ) 2L g
i\,/ A =y, i ¢ *.c/ n,
0 6 i B i
0
2

- Jt pi,(occ + f—————————p nyf) — X C) @t Enirae G £,
i "1%1 22 B

as n + » for each t € [0,»] and for any B < [0,~] such that i'(W_l(F)) is

continuous and bounded outside B, and such that B® ¢ [0,s] for some s ¢ I.

After that we carry out the obvious extension procedure: we find a decreas-

ing sequence o£ sets Bé, each of which has the properties just required of

B, such that rgl B; equals the complement of I plus finitely many points,
and such that

lim lim sup PU (" (‘l‘_l(f‘_)))ngY,—ldG > e) =0
e o B! +

for all ¢ > 0. Then if (5.3.24) holds with B = B; for each r, it holds with

3 = @; here we use the relation, for real functions f and g and a finite

measure |,

t ) t 5 t 2 t
U (F+gx ) du—I (£+g) dul = H Xg9 du + 2[ xBfgdu‘
0 B 0 0 0

<|J, Fara {2, 7))

Using the fact that Conditions II and III are satisfied for the test statis-

tic of COX, we can take B; = Br u (sr,w) for each r, where Br is constructed
in the proof of Proposition 5.3.2, and where s, =1 for all r if u e I,

otherwise sr < u and s, +uas r > o,

To return to the proof of (5.3.24), we recall from the proof of
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Proposition 5.3.1 that

A%n—x5
n,, 6. "0
= c i 2 i 0
n1+n2 xz e?_eo
0 i
converges in L2(F) to
e 3 ] -1
Pir © 38 log Ae =P C LY T(F)).
6=06
0
Also, by the properties of B,
n
A _J; -
L5y T (F)) T n, KC
i
converges uniformly on 5 to
5 ¥1Y,

ey 2ot
v, i

_—_-——.’
i P1¥y+Py¥,

in probability, as n - «, Since the latter function is bounded on Bc, the

L2(F) distance between

k]
n, e, Y4y
-1 - i =% -1 i' 1¥2
'Y T(F)) g7 n," KX and "(Y "(F)) — ———— ¥

. 2
converges in probability to zero as n -+ <. Thus the difference, in L"(F),

between
4 i B N
a2ni< - 1) + BL'(Y T(F)) Ty Ko X o
¢} i B
0
and
_ Y,y
o, ar (¥ 1(F))<ac s B2 )
1 ¥y Pq¥y HP¥y TRC

converges in probability to zero as n - <. Combining this fact with the two

facts

¥, (t)

sup

- y.(t)’ - 0 as n > ®
te (0,%) * P

oy

and

Y, -1
P(;l-l— < B "(1-F) on [0.«1)) =1~ 0(1)
i
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as 8 + 0 uniformly in n in the same way as was done in the proof of

Proposition 5.3.1 yields (5.3.24). [

COROLLARY 5.3.1. Suppose that the conditions of Propositions 5.3.1 and
5.3.2 hold, with {Fg: 8 € 0} given by (5.3.13), and with the asymptotic
variances of log %E—l— and Wopt(w) strictly positive. Then the efficiency of
the best test of the class K (the one based on Kopt) with respect to the
next powerful test for the sequence of alternatives is given by (5.3.22).
This expression equals 1 if and only if Yy =Y, almost everywhere-drF
where 2.'(‘1’—1(5‘)) # 0, or for i =1 or 2, pi = 0 and y; = 0 almost every-

where~-dF where Yoo = 0 and E'(‘i’_l(F)) #0 (1" # 1).

PROOF . That the efficiency is given by (5.3.22) is a straightforward appli-
cation of Le Cam's third lemma. The conditions for an efficiency of 1 were

investigated on page 113. [

As far as Examples 5.3.1 to 5.3.4 are concerned, the only difficulties
in verifying the conditions of Corollary 5.3.1 occur with the verification
of (5.3.18) for the case ¥ = &, the standard normal distribution function.

Now in this case, replacing F with F = (nF+1)/ (n+1) , we have
-1 ~ ow—l -1 ~
=0 T(F) < 2" (¥ T(F)) < =% T(F_) +2¢(0)

on {t: ;_(t) < %}. So in the presence of Conditions (5.2.4) and (5.2.5),
(5.3.18) is equivalent to

t
lim lim sup P(J (o7t (F_))zx{F ) OF > e) =0
t40 nre 0 -

under HO for all € > 0. By (5.2.4), (5.2.5) and Proposition 3.2.1, this
holds if

t
lim J (071 (gr))%aF = 0
t40 70

for all B > 0. But by the change of variables x = <I>_1(BF(t)) + the expres-

sion on the left hand side of this relation equals

X
lim J u2 é ¢(u)du = 0
X~ 7o

as required. This gives us



135

COROLLARY 5.3.2. Under the conditions of Proposition 4.3.3 and with F con-

tinuous, (5.3.19) and (5.3.20) hold when Kopt is defined as in any of
Examples 5.3.1 to 5.3.4.

This result could have been extended to discontinuous F too, but we
have not taken the trouble as it is hardly likely that one would use one of
the new test statistics in such a case. Many authors indicate how asympto-
tically optimal test statistics might be constructed for the kind of situa-
tion we have considered; in particular PETO & PETO (1972), BROWN, HOLLANDER
& KORWAR (1974), CROWLEY & THOMAS (1975) and PRENTICE (1978) all describe
test statistics close to or identical to our proposal for the logistic dis-
tribution. However, as far as we know, no proof has been given that the
hoped for properties of such test statistics do indeed hold in general.

The test statistics we constructed above were all members of K+. As
examples of optimal test statistics for which Kb

pt
mention the case of varying shape parameters in the Weibull distribution,

is not nonnegative, we

for which we obtain
Yy « 1 - log(-log(1-F))
and the case of varying shape parameter ¢ in the lognormal distribution,

for which

1

vy« o m (~e - @) (1-m Y.

In each case, we suggest choosing the random weight function obtained by
multiplying Kc with the above expressions after replacing the argument F
with F_.

5.4. Rényi-type tests

We have seen that test statistics in K can be constructed to have
good properties when testing against particular parametric alternatives.
At the same time, such test statistics will generally be consistent against
alternatives of e.g. stochastic ordering (see Section 4.1). Still, it is
conceivable that one would want consistency against the alternative of mere
inequality of F1 and F2. In this section we show how this can be (nearly)
attained by means of a simple modification of the test statistics in K,
while retaining some of the good power properties against special alterna-

tives.
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We consider asymptotic behaviour under a fixed null and a fixed alter-
native hypothesis; i.e. either F? = Fg = F for all n (HO) oxr FT = F1 and
n

F2 = F2 for all n, Fl # F2 (Hl)' Suppose as usual that (5.2.4) and (5.2.5)
hold, where unlike the case of contiguous alternatives, the functions vy
and ¥y will generally depend on whether one is working under HO or Hl' Let
u € (0,») be fixed and satisfy yl(u) > 0 and yz(u) > 0 both under H_. and

0
Hl' Now consider a test statistic in K for which

n1+n2

R )

K

converges uniformly on [0,ul] to a function k under H0 and H1 (again, the

function k will generally depend on whether one is working under H_ or Hl)'

0
Suppose in each case that k is left continuous with right hand limits and
k_ of bounded variation on [0,u]. Applying Theorem 4.2.1 and Lemma 4.3.1,

it follows that under HO, as n > «,
le dN2 ®
W= J K(—-—-— - 72—) *p 2o in plo,u],

o«
where Z0 is a zero mean Gaussian process with independent increments and

variance function

o 2 (top,, 9
var(zg(t)) = J J k(1 -AG)AG  (i' # i);
i=1 Jo Yi
also

Vm(u) p var(zo(u)), 2 =1 or 2.

On the other hand, under Hl’ as n > ®,

aN, dan
J K(——i-— —-3) - | X(dG, -4G,) +, 2.  in DLO,u]
T, 1796 7p 2y rady

oo «©
where Z1 has the same properties as ZO except that its variance function is

now given by

© 2 (tei 5

var(zy (t)) = ] J = k“(1-04G,)dG, (i' # i);

, v, ERad'}
i=1 "0 “i

also
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Vl(u) > var(ZT(u)):

P
v, () > % r—pyi k2(1 - plyéfl :pzy?‘A%)dG. (i' # 1),
i=1 “0 Y4’ 1¥1 T Pp¥p +
and
n,+n t
teﬁgl?u] K(dG, - &G,) - Jo k(dG, - dGz)l »p 0.

(For the result on Vz(u) see Section 5.1, especially formulae (5.1.1) and
(5.1.2).) Now choosing & = 1 or 2 suppose that the limit in probability of

Vz(u) is strictly positive under H, and Hi' Then arguing as on page 80, we

0

see that under HO’ as n > o,

sup lw(t) |
(5.4.1) vy = telonud wpsup IB(O S sup  IB(®),
sz(u) teA tel0,17]

where B is a standard continuous Brownian motion on [0,1] and A < [0,1] is
the range of the function var(zS(-))/var(zg(u)) : [o,ul - [0,1]. So
A =[0,1] if F is continuous.

However underxr Hl’ as n > «,

>
UP°°

unless f k(dGl—dGz) is identically zero on [0,ul. This candonly happen if,
G G
undex Hl’ k = 0 on [0,u] almost everywhere-du where ?ir‘# 75?7 where u is

1 and G2. In particular, if under Hl k is

positive on [0,t] for some t < u such that Fy and F, differ on [0,t], then

the test of HO based on the test statistic U is consistent against Hl‘ Note

that if we base the test on the distribution of N gplj |B(t) | even if
€ ’

a o-finite measure dominating G

A # [0,1], it becomes a conservative test.

More information is given on this distribution on page 81. The two-
sample procedure we have proposed here can be considered as an extension
of the one-sample confidence-band technique we discussed in Section 4.2,
which itself extended a method of RENYI (1953); hence our name "R&Enyi-type
tests". It can also be considered as a Kolmogorov-Smirnov type test, since
it ingased on the maximum distance between two empirical processes, here

1

f K 1?—-and f X E?Z . A related class of test statistics is described by
1 2
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FLEMING & HARRINGTON (1980), whose work is also based on AALEN (1976).
KOZIOL & PETKAU (1978) propose the test statistic U in the special case
when K = KC (corresponding to the test statistic of COX) and when the
censoring is simple Type II (Example 3.1.2).

It is interesting to compare the test statistic U with its natural
competitor

_ v |
Vv, (a)

U’

(where the same £ has been chosen as in the definition of U). It is not
possible to standardize U in some fixed way so as to obtain an equivalent
test statistic, asymptotically normally distributed with fixed variance
both under the null hypothesis and under a contiguous alternative hypothesis.
So if a comparison between U and U' is to be made in terms of Pitman asymp-
totic relative efficiency of U with respect to U', care is needed in defin-
ing this concept in the first place. Defining it as the limit, for a sequen-
ce of alternatives approaching the null hypothesis, of the ratio of the
sample sizes required by size o tests based on U' and U respectively to
achieve power B at each alternative in the sequence, it will depend on o
and B. However, a theorem of WIEAND (1976) gives conditions under which
this asymptotic efficiency has a limit as o + O independent of B € (0,1).

Application of WIEAND's theorem shows that in one very general case
of interest, and under suitable regularity conditions, the limiting Pitman
efficiency of U with respect to U' equals 1. This is the case of the order-
ed hazard type of alternative hypothesis - dG1 < dG2 on [0,u] or dG1 2 dG2
on [0,ul - and of a random weight function K whose limiting weight func-
tion k is positive on [0,ul]. The explanation of this result is that in this
situation, the two quantities

t u
sup \J k(dGl-dGz)‘ and |J k(dGl-dG2) ’
tel0,ul 0 0

which play an important role in determining the asymptotic behaviour under
a fixed alternative of U and U' respectively, are equal; while the tail
behaviour of the limiting null hypothesis distributions of U and U' res-—
pectively is the same too. However more attention needs to be paid to the
small sample properties of the test statistic U before too much weight is

attached to this result.
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CHAPTER 6

GENERAL CENSORSHIP AND TRUNCATION

In previous chapters we have only considered so-called right censored
observations of n lifetimes xl,. . "Xn' Furthermore we have supposed that in
a natural time scale each lifetime starts at time zero; in other words, at
time t each object still under observation has age t. In Examples 3.1.1,
3.1.2 and 3.1.5, the experiment being modelled already had this property;
in Example 3.1.4 on the other hand independence between the observations
was used to realign the xi's without causing any problems.

In this chapter we shall informally discuss a model for censored ob-
servations Xl"' .,xn in which we allow the time of birth to be different
for each object; we also allow for far more general schemes of partial
observation of these lifetimes than previously. For simplicity we restrict
attention to the one-sample case in which Xl""'xn are independent and
identically distributed with a distribution function F which we want to
estimate. Finally we shall illustrate our remarks by looking again at
Example 3.1.6. For other examples we refer to HYDE (1977) and LAGAKOS,
SOMMER & ZELEN (1978). Our approach is similar to HYDE's (1977).

For convenience we shall take as usual as time axis the positive half
line [0,®). Let TyreeesT 2 0 be n random birth times, and let XyreoarX, be
the corresponding n lifetimes; we suppose that xl,...,xn are independent
and identically distributed with distribution function F satisfying F(0) = 0.
We say that object i is born at time Ti and dies at time Ti+xi'

However this system is only partially observed. We suppose that there
also exist n random observation processes Jl,...,Jn defined on [0,») and
taking values in {0,1} such that if Ji(t) = 1 then object i is alive and
under observation just before time t; in this case we suppose that we know
the object's age t—'I‘i and can observe whether or not it dies at this
moment; i.e. whether or not t-'I'i = xi. In particular it follows that Ji is
zexo outside the time interval (Ti,Ti+xi]. If in the interval (Ti,Ti+Xi]

the sample paths of J, are nonincreasing and left continuous, partial
i
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observation of the i-th lifetime results in a censored lifetime ii and an
indicator random variable 6i such that Si =1 ='§1 = Xi, Gi =0 = gi < Xi'
However we shall not make this restriction in this chapter.

We shall have to make some kind of assumption concerning the possible
dependence between the observation processes Jl""’Jn and the lifetimes
xl""’xn‘ As in Section 3.1 we wish to exclude the possibility of statis-
tical dependence between whether or not an object has been or is being
observed and its remaining lifetime. We shall formulate such an assumption
by imitating Assumptions 3.1.1 and 3.1.2, for which we shall assume that
xl,...,xn, Tl""'Tn' Jl""'Jn are defined on some stochastic basis
(Q,F,P),{Ft: t € [0,9)}. We also define for each i = 1,...,n and each
t € [0,%)

(6.1) N (8D = X(r 4x_<t,0, (x,+T,)=1}
i 1 11 1
(6.2) L, (t) = (t—Ti)X[Ti,m) (t)
t -1
(6.3) M, (£) = N, (£) -J 3, (s)dG (L, (s)), where G = j (1-F) “aF
1 1 0 1 1

(recall that Iy is zero outside (Ti,Ti+xi]).

Our assumptions then become:

ASSUMPTION 6.1. With respect to the stochastic basis (Q,F,P),{Ft: te[0,®)},
for each i = 1,...,n, Ti and Ti+xi are stopping times, Ji is a predictable

process and Mi is a square integrable martingale with

<Mi'Mi> = J Ji(l-AG(Li))dG(Li)

and

M, M, > =0 (i # 1.

ASSUMPTION 6.2. For each t, conditional on Ft—’ ANl(t),...,ANn(t) are

independent zero-one random variables with expectations Jl(t)AG(Lz(t)),...,
I, (B)IAG (L ().

Even though the censoring is more general, the new assumptions can be
interpreted exactly as Assumptions 3.1.1 and 3.1.2 were; the only difference
is that the lifetime of the n objects start at times Tl""’Tn instead of

time zero. Note that the process Ni counts 1 at the death of object i if



and when death is observed. Thus if F has a continuous hazard rate A, we

are stating that given what has happened up to time t, the probability of
observing the death of object i in the time interval [t,t+h] is zero if

Ji(t) = 0; otherwise it is approximately hA(t—Ti) where t-—Ti is the
object's current age.

If for each i, Ti = 0 almost surely and Ji has the properties described

above leading to right censored observations, Assumptions 6.1 and 6.2 are
equivalent to 3.1.1 and 3.1.2,

What can be observed are the processes Ji' and for each i and t such
that Ji(t) = 1, the age of object i at time t and whether or not death oc-
curs at that time instant. To estimate F we shall first want to pool our

observations, and this leads us to define for s ¢ [0,%)

(6.4) N(s)

#{i- X, s J(Ti4x) =1}

(6.5) Y(s)

1]

#{i: Ji(Ti+s) =1}.

Here the argument s refers to age: N(s) is the number of deaths observed at
an age < s, and Y(s) is the number of objects which were under cbservation

at age s. It is again natural to estimate F with the product limit estimator

defined with respect to N and Yi' i.e. by

(6.6) F(t) =1 - 1

However it is not clear whether F will have the same properties as we es-—
tablished for it in Chapters 3 and 4.

In the special case T1 = .. = Tn = 0 almost surely, we can easily
generalize the old results. (Such a model is also discussed by AALEN (1976)

with the further restriction that F should have a hazard rate.) Defining

(6.7) M =N - J YdG

we have in this case N = [} _ N, ¥ = 1oy Jg. and M= Iy M;, so that M
is a square integrable martingale with <M,M> = f Y(1-AG)dG and ¥ is a
predictable process. Also for each t, conditional on Ft—' AN(t) is
binomially distributed with parameters Y(t), AG(t) . In deriving results on
the product limit estimator in Chapters 3 and 4, the only further proper-
ties of N and Y we used were some of the properties of the paths of Y¥:

left continuous and nondecreasing. These properties no longer hold and
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proofs will have to be modified accordingly. For instance in Theorem 4.1.1

the condition "¥(t) -, «" would have to be replaced by " fup Y(s) »_ «n,
P sel0,t] P
If we cannot suppose that Ty =...= T, = 0, the process M defined by
(6.4), (6.5) and (6.7) is not necessarily a martingale. However we shall
show that it still has the same mean and covariance structure, and indicate
the significance of this result. Define for each age s and time t

s -—
Hi(t) = Ji(s)x[O'SJ(Li(t)).

It is easy to verify that

n Q0
N(s) = ] f B (£)aN, (1) .
i=1 -0

This suggests we also evaluate
n

S
121 IO H] (£)3, (£)dG (L, (£))

n
=) J J; (£)dG(t-T))
i=1 “te(T ,T +s]

s
I Y (u)dG (u) .
0

Thus

P s
H dM, = N(s) - I YdG = M(s).
=101l 0

But for given s, Hi is a bounded predictable process and therefore by
(2.2.1) and Assumption 6.1,

(6.8) i = E(N-—J YdG) = 0,
or equivalently,
EN = J EvaG.

Similarly using (2.2.2) we obtain
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(6.9) EM(s)M(s"))

[ [

m m
—
7~

~1
o~
-
—
o 8 —
- o 8
H 0 i
1 mm I-‘-%'Ul
o ot
= ~ S
—~ TN
-
' 13
B>
o 8
[
B 22}
~ 1]
[o})
8 g
— =
= ~—
- N

]

E I ghs’ -
121 S T -esay)asey)

sAs'
J EY (1 - AG) dG.

0
Thus although M is perhaps not a square integrable martingale with <M,M> =
= f Y(1 - AG)dG, it has exactly the same mean and covariance structure as if
it were. This fact, together with the representation (3.2.13) of
(F-F)/(1-F) as an integral with respect to M, suggests that if, as in

Theorem 4.2.2, convergence in probability of Y/n implies convergence in

k]

distribution of n’(F-F), then the limiting distribution of n?(F - F) will
be of the same form as in Theorem 4.2.2 and we will be able to base asymp-—
totic confidence band procedures on the observable processes N and Y exact-
ly as was done after Theorem 4.2.2.

Before illustrating this point further, let us mention a useful exten-
sion of the above model. We have assumed that at most n lifetimes could have
been observed. However there are no real difficulties involved in allowing
the total number of lifetimes specified in the model to be infinite (so
that we specify lifetimes Xl'x2""’ birth times Tl'Tz"" and observation
processes J1,J2,...). We still define N, ¥, F and M by (6.4) to (6.7), and
as long as E(N(®)) < » we can establish (6.8) and (6.9) by monotone con-
vergence and L2 convergence respectively. The censoring implied by the Ji‘s
is really a mixture of censoring and truncation: objects i for which the
realized path of Ji is identically zero are not registered by the processes
N and Y and one does not even have to know which or how many objects are of
this kind.

With this last extension we can finally discuss Example 3.1.6. First
we consider a single replacement seguence; i.e. we start with a single ob-
ject and replace it at death with a new one, and continue till a fixed
length of time u has elapsed. Thus we let X;,X,,... be the independent and
identically distributed lifetimes, we define the birth times by T1 = 0 and

n-1

Tn = z. 1 X., n=2,3,..., and define the observation processes Ji by
l=

i
Ji(t) =1 e T,

;< t € T,Au. Assumptions 6.1 and 6.2 are easily verified
i—- i
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for the natural choice of Ft using some of the counting process theory of
Section 2.3. Example 3.1.6 is concerned with n independent copies of thisg
model.

Two different asymptotic approaches are now available; let u become
large or let n become large. The case u + « is of course rather trivial as
far as this specific model is concerned. However more general replacement
models in which objects can be replaced before death lead to great difficul-
ties and so far no general results are known. BATHER (1977) describes such
a model in which a death is more costly than a planned replacement. As time
evolves an estimate of F and the corresponding cost minimizing replacement
policy are improved.

In the case n + ®» the results suggested above do hold (see GILL (1978,
1980)). Of course we can no longer apply a martingale central limit theorem
to nh(f‘-F)/(l - F), but the independence between the n copies allows us to
apply the weak law of large numbers to Y/n and the central limit theorem to

n~M, and (3.2.13) links these to nl’(f‘*—F).
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Appendix 1
Proof of Theorem 2.3.1.

Here we exploit the properties of the so-called optional quadratic
variation process [M,M] associated with a local martingale M (see MEYER
(1976) or JACOD (1979)).

Consider first the case r = 1 and drop the index i. N is locally bound-
ed, and by the proof of MEYER (1976) Theorem IV.12, so is A. Since
[M,MI(t) = Zsst AM(s)2 it turns out by expanding (AM(s))2 that

[M,M] = J (1-2An)am + J (1 -AR)dA.

1-2AA is a locally bounded predictable process and M is a local martingale,
hence f (1-2AR)AM is a local martingale, with paths of locally bounded
variation. Since the processes 1- AA and A are predictable, so is

I (1~ AA)dA; and of course it too has paths of locally bounded variation.
Combining these facts and using MEYER (1976) Chapter IV, we see that [M,M]
is locally bounded and hence locally integrable. This implies that M is a
local square integrable martingale. In this case, <M,M> is equal to the

dual predictable projection of [M,M]; so
<M,M> = [ (1-AA)dA.

Since the paths of <M,M> are non-decreasing, we now see that 0<AA<1.
So 1 - 2AA is a bounded predictable process. If T is a stopping time such
that EN(T) < =, then EA(T) < «, and e (the process M stopped at T) is a
martingale of integrable variation. Consequently E f'g (1-2An)aM = 0; also
E fg (1-AA)3A < »; and so E[M,M](T) < =. But for any local martingale M,
E[M,M](T) < = implies that M’ is a square integrable martingale.

Now we consider the case r > 1. All that remains to be proved is that
<Mi'Mj> = - f AAidAj. If i # 3, Ni+Nj is also a counting process, whose

compensator must be Ai+Aj. So
= - - . +dA.
<Mi+Mj,Mi+Mj> J (1-2a, AAj) (an, 3) ,
while by bilinearity and symmetry of <+ ,*>,

> = <M.,M.> + <M.,M.> + 2<M, ,M.>.
MMy My = M 3™ i3

Combining gives the required result. ]
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Appendix 2

On constructing a stochastic basis

If o-algebras Ft are defined in some natural way, as in formula (2.3.6)
or in the statement of Theorem 3.1.2, it is not immediately obvious that
they form a stochastic basis: in particular, it is not obvious that
{Ft: t € [0, } is right continuous. Here we give a theorem of DE SAM LAZARO
(1974) which answers these and related questions in a very general setting.
First we need some notation and definitions.

Let (2,F,P) be an arbitrary probability space, and let (2,Z) be an
arbitrary measurable space. A Z-valued function X on [0,2) is called a jump
function if for each t € [0,») an ¢ > O exists such that x is constant on
[t,t+el. A process X = {X(t,w): t € [0,%), w € Q} is called a jump process
if for each t, X(t) is a measurable mapping from (?,F) to (2,Z), and if for

each w, the sample path X(:,w) is a jump function on [0,») with values in Z.

THEOREM A.2.1. Let X be a jump process, and define

FO = ofx(e): s < tl.
0 . . {FO}
Then {Ft: t € [0,»)} is right continuous. Furthermore, if T is any N

stopping time, then

F’I(‘) = o{X(sAT): s € [0,=)}.
PROOF. See DE SAM LAZARO (1974) Lemma 3.3. This proof is elegant and ele-
mentary, and can be read independently from the rest of the paper if one
notes that in it, the reference to the first part of Proposition 3.1 should

be to the second part of Proposition 2.1. [

COROLLARY A.2.1. Let X be a jump process, and let A be an arbitrary sub

o-algebra of F. Define

Ft = AV o{xX(s): s £t}

, . , N
Then {Ft} is right continuous, and if T is any {Ft} stopping time,

(a.2.1) Fo=AVolx(sam: s e [o,@} = AV olTX(sAT): s € Lo,=) 1.
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PROOF. Define a jump process X with values in the measurable space (zxQ,Z8A)

by
X(t,0) = (X(t,w),w).

Since Ft = o{X(s): s <t} and AV o{X(sAT): s ¢ [0,2)} = o{X(sAT): s € [0,%)}
the result is immediate (T can be included in the final expression of

(A.2.1) since it is automatically Er measurable). [

From Corollary A.2.1, we see that if F is complete and A contains all
P-null sets of F, then (Q,F,P),{Ft: t € [0,o)} forms a stochastic basis.

In a typical application of Theorem A.2.1, we might be given a proba-
bility space (Q,F,P), on which are defined random time instants (i.e.
[0,»]l-valued random variables) Tl""'Tk’ and a further k random variables
Yl""’Yk which are supposed to be "realised" or become observable at the
time instants Tl""'Tk' We wish to construct o-algebras Ft relative to
which Tl""’Tk are stopping times and which reflect the availability of

Yi from time Ti' This can be done via the construction of a jump process X

with values in 1R2k, defined by

X8 = ((X(p cp}r ¥y Xpp gt L= Loeenik).
1 1

We then get

0_ o - .« 4=
Ft = o{x(s): s <t} = 6{(X{T.St}’TiX{T_St}’YiX{T_St})' i=1,...,k}
i i i
and
0
Ft = Ft VA,

where A is the set of all P-null sets of F (supposed to be complete) and
their complements. So defined, (Q,F,P),{Ft: t € [0,%)} is a stochastic
basis; T1""'Tk are stopping times; and for any stopping time T,

Fpo=AV U{T'(X{TiST}'TiX{TiST}'YiX{TiST}) :i=1,...,k}.

(In fact T itself can be omitted from the list of generating random vari-
ables, but the above form is easier to interpret.)

The same construction works for random time instants Td, o € A, with
an arbitrary index set A, provided that for all w € Q, for every t € [0,®)
an € > 0 exists such that for all o € A, Ta(w) ¢ (t,t+el. If this property
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only holds for P-almost all w € Q, then the construction can be applied
provided that the Ta's are first redefined on the exceptional set. After

. 0-_ .
that, augmenting Ft with all P-null sets of F as above yields a stochastic

basis, which in fact does not depend on how the Ta's have been modified.
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Appendix 3
Proof of Theorem 2.3.4

Following JACOD (1975,1979), the stochastic bases constructed in the
course of the following proof do not necessarily satisfy the completeness
assumption ((iii) on page 8).

By altering N on a null set of F, we may suppose that all the paths
of N are nondecreasing, right continuous, zero at time zero, and integer-
valued with jumps of size +1 only. We may redefine TO,Tl,... accordingly;
and we can alter A on a null set of F so that all of its paths are zero at

time zero and satisfy
t e (Tn,Tn+1] = A(t) - A(T)) = E(E=T 5Ty pen e, T )

By the completeness of {Ft: t € [0,2)}, A and N remain adapted processes
after this alteration. (It is not immediate that A is still predictable,
but we do not need this fact anyway.) Next, define g-algebras Fﬁ,

t € [0,»], by

Fﬁ = o{N(s): s < t}.

(Q,F§,P),{Fi: t € [0,»)} forms a stochastic basis on which N is a counting
process, all of whose paths have the usual properties. By JACOD (1979)
Proposition 3.39, A is a predictable process with respect to this new
stochastic basis; and all its paths are nondecreasing, right continuous,
and zero at time zero. It is also easy to verify that N- A remains a
martingale; so A is still the compensator of N.

Let X be the set of nondecreasing, right continuous, integer-valued
functions on [0,») which are zeroc at time zero and make jumps of size +1
only. Letting X = {xt: t € [0,»)} denote the generic member of X, define

o-algebras on X by

Xt = c{xs: s <£t}, tel[0,>].

Define on (X,Xw) measurable functions Tn = inf{t: xt 2n}, n=0,1,...;

and define a process 4 = {4,: t ¢ [0, } on (X,X)) by

a, = 0 and t e (Tn,1n+1] = at-aTn= fn(t-Tn;Tl,-..,rn).
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N
Finally define a probability measure P on (X,Xm) by

PN = P°¢_1,

where ¢ is the measurable mapping
b: (9,FN) > (x,X),

defined by ¢(w) = N(-,w). We now see that
(X,XQ,PN)L{Xt: t e [0,°)]

is a stochastic basis, on which X is a counting process and (by JACOD (1979)
Proposition 3.39 again) a4 is a predictable process. a4 has right continuous,
nondecreasing paths, zero at time zero. Also for all t € [0,), Fi =

= ¢—1(Xt), and by definition PN = P°¢—1. Therefore by JACOD (1979) Theorem
10.37, X—-a is a martingale, so a4 is the compensator of X.

Had we started off with a different stochastic basis, and a different
counting process N', satisfying the conditions of the theorem with the same
functions fO'fl""’ we would have proved that a4 is also the compensator of
X with respect to the stochastic basis (X,XN,PN'),{Xt: t ¢ [0,%)}. There-
for by JACOD (1975) Theorem 3.4, PN and PN' coincide on Xw. But the joint
probability distributions of Tl'T2"" and Ti,T',... can be recovered from

N N'
P and P respectively, and the theorem is proved. [J
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Appendix 4

Proof of Lemma 3.2.1

We shall derive Lemma 3.2.1 as a corollary to the following proposition:

PROPOSITION A.4.1. Let A and B be right continuous nondecreasing functions

on [0,»), zero at time zero; suppose AA < 1 and AB < 1 on [0,»). Then the

unique locally bounded solution Z of

1 - Z(s-)

(a.4.1) Z(t) 1 - AB(s)

J (da(s) -~ dB(s))
sel0,t]

is given by

it (1-AA(S))exP(—Ac(t))

1 - sst
I (1-AB(s))exp(-B_(t)) '
s<t

1]

(A.4.2) Z(t)
where it should be recalled that AC is the continuous part of A, defined by
(3.4.3)  A_(£) =A(t) - ] AA(s).

s<t

PROOF. We adapt the proof of LIPTSER & SHIRYAYEV (1978) Lemma 18.8, which
deals with the case where B is identically zero. We shall make use of the
following simple results: if U and V are right continuous functions of

locally bounded variation on [0,®), then for all t e [0,®)

(A.4.4) U(t)v(t) = U(0)v(0) + J U(1-)dav(s) + I v(s)du(s),

se(0,t] s€(0,t]

which can also be written in the form
(A.4.5) d(uv) = U_dv + vau.
From this one can easily derive

=l i

(a.4.6)  aw’) = ( 7 outut ‘l)du, r=1,2...
i=0

and

(A.4.7) aw ™l = —(UU_)"1 du.

If U is nondecreasing and nonnegative, then (A.4.6) gives
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- -1
a.4.8) o5 lau < aw®) = w0t tau,  r=1,2,... .
Let us first show that (A.4.2) does define a solution to (A.4.1). It
is certainly locally bounded. Define

1 - AA(s)

N 1 - AB(s)

u(t)

U}
=1

s

and

v(t) = exp(—AC(t) + Bc(t)).
Then if (A.4.2) holds,

Z(t) =1-U(t)V(t) =1-U0(0)V(0) ~ J U(s-)dv(s) - J V(s)du(s)
se (0,t] se(0,t]

—J U(s-)V(s) (~dA_(s) +dB_(s))
se(0,t]

(1 - MA(s) 1\

- L v T m s /

sst

1 - Z(s-)

TT_EB—(_ST(GAC(S) - dBc(S))

Jse[o,t]

1 - 2(s-)
+ ] = (8A(s) = AB(s))
ot 1 - AB(s)

- J e - e,
selo,t]
where (1 - AB)“1 could be introduced into the integrand because Ac and Bc
are continuous.
Next, suppose Z' is another locally bounded solution of (A.4.1).
Define 2 = 2-2', L(t) = supl%(s)l, a=f (1—-AB)-1(dA-+dB). Then for any
s £t

lz(s) | < I 1Z (u-) [da(w) < L(t)a(s).
uel0,s]

Substituting the outer inequality back in the first one gives

A

|Z(s) | L(t)o(u-)da(u) < %L(t)a(s)z

J'u6[0,s]

by (A.4.8) with r

L}

2. Repeating this procedure, we find that for any r,
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lz(s)| Sé%ﬂ(s)r—*o as r - o, ]

COROLLARY: Proof of Lemma 3.2.1.

(3.2.9) holds for t such that G(t) < « by setting B =0 and A = G in (A.4.1).

If G(t) + »as t + 1 for some ¢ > 0, then (3.2.9) must also hold for t=1

. o R -1 .
by taking limits. Since G = f (1-F_) "dF, in this case we must have

F(t) 41 as t 4 0o, and so 0 = T and (3.2.9) holds for all t > T.
We have now proved assertion (i). The only non-trivial part of (ii) is

to show that F(t) 4+ 1 as t 4+ T implies G(t) + » as t + 1. Now for each

t < T, sefdlpt] AG(s) < 1. By (3.2.9), taking logarithms and carrying out
’
a Taylor expansion,

-G(t) —%C(t)G(t) < -G(t) —-%C(t) ) A(;(s)2 < log(l=-F(t)),

sst
where

c(t) = sup (1-286(s)) L <w
sel0,t]

for each t<t1. If F(t) 41 as t+ 1 then either G(t) +« or lim sup AG(t) =1
thT

but the latter equality also implies that G(t) + «.
Assertion (iii) follows immediately from (i) since continuity of F
implies continuity of G.
Finally by (3.2.6) and (3.2.9) for t such that F(t) < 1, putting
A= j’i'lyH and B = G in (A.4.2) shows that
1-F
z=l-17%
solves (A.4.1) with the present choice of A and B. But with this 2z, A, and
B, (A.4.1) is equivalent to (3.2.12) by the equality (1-F(s-)) (1-AG(s)) =
=1-F(s). O
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Appendix 5

Asymptotic normality of an estimator of mean lifetime

Many authors consider estimation of mean lifetime f; tdF (t) =
f; (1-F(t))dt on the basis of the product limit estimator. However either
no attempt at proof is made (KAPLAN & MEIER (1958), BRESLOW & CROWLEY (1974)),
or boundedness assumptions are made: YANG (1977) assumes that F(t) = 1 for
some t < « and FLEMING (1978) only considers estimation of IE (1-F(s))ds
for some t such that F(t) < 1. (In these two cases Theorem 4.2.3 and
Theorem 4.2.2 respectively can be applied directly.) The estimator consider—
ed is always fg t dF (t) or Ig (1-F(t))dt where T = m?x §j (the notation
here is as in the second part of Section 4.2). These quantities are related
by

T T
J (1-F (£))dt = J t aF (t) + T(1-F(T)).
0 0

Here we shall consider ﬁT = fg (1-F(t))dt and define a corresponding
function u by

t
p, = j (1-F(s))ds
0

and process {i by

t
ﬁt = J (1-F (s)) _i;Lgéél_ ds
0 1 - F (s)
where FT(s) = F(SAT). We also define a function U by

(-~}
M, = j (1-F (s))ds.

t
We assume throughout that p_ = ﬁo < o,

: . PN

We shall give conditions for asymptotic normality of n (uT-uT);
consistency of ﬁT was mentioned on page 58. We shall assume that F(t) < 1
for all t < @, F(®) =1 and T Fp @ asn e We shall not give conditions

%

for n ) = n%ﬁT +P 0 as n » =, though we shall mention an example

(B~
where it holds.

Before stating our theorem, let us note one application of our results
which is not so obvious: namely to the Total Time on Test Plot of BARLOW &

CAMPO (1975). This is a plot of an estimate of
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oo

(1-F(s))ds /J (1-F(s))ds

JF—I (p)
0

0

against p € [0,1]. We propose that for censored data the plot should be
made with F instead of F and T instead of « in this formula (BARLOW & CAMPO
(1975) suggest the use of N/N(®) rather than F), so our results give con-

ditions for the denominator here to behave respectably.

THEOREM A.5.1. Assume the conditions hold given in the first sentence of

Theorem 4.2.3 and define y, I and u as was done there. Suppose furthermore

that uw = ® (so that T —>P ©® as n > ) and F(u) 1. Then under the conditions

-2 t -1
(ar.5.1) lim p J ((1-F) (1-F_) (1-L_)) ~ dF =0

tho T Jp

and
(A.5.2)  lim lim sup J 72 ((1-m) (1-F ) (1-1) "~
tte e t

1 n
X(0,13F) &F =0

we have

(3.5.3) 00 ru) »p N©,0D)  asn s e,

where

(a.5.4)  o% = J P2(1-m (1-F ) (11 )7 aF < w,
0

02 can be consistently estimated by

T T 2 ny
- {v>1} 4N
Jo (LJl-F(S))dS) V-1 v -

PROOF. Let Z be defined as in the proof of Theorem 4.2.3. We have

0 (fimu) nk“g (1-F) ==E_ g - J (1—F)ds>
1-p7

- T
= - J' P EZE (ipyas = J zan
1 T

nz - J ndz.

To prove (A.5.3) for some 02 it suffices to show that for all ¢ > 0

>e>=0

lim lim sup P( sup ‘(ﬁz - Jﬁdz)(s) - (ﬁz - Jﬁdz)(t)

L O Nl se (t,»)
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and that the same holds with lixrx11+cs°up omitted and with Z instead of Z. We
can consider the parts uz and fﬁdz separately. Now the second part is easy
to deal with in the usual way since it is a square integrable martingale

with predictable variation process

5 \2
-2(1-F_ J
J u (1 ~ F) n g (1-4G)&G.

We use the inequality of LENGLART (Theorem 2.4.2), in which we bound 1—f‘__
with s"l(l—F_) and n J/Y with g *

((1-F_) (1—Lr_)))'1 X(O,l](LE) according to
Theorem 3.2.1 and VAN ZUIJLEN {1978) Theorem 1.1 and Corollary 3.1 respec-
tively. The part 1—12 can be dealt with exactly as was (1-F)2 in Theorem
4.2.3. Running through the proof of that theorem we see that (A.5.1) and
(A.5.2) correspond to (4.2.2) and (4.2.3); each time a term (1-—F)2 has
been replaced by 1—12.

This proves weak convergence of the process n%(ﬁ-—u) in D[0,»]. Since
obviously T 7p © as n > @ we also have asymptotic normality of nlz(ﬁT—uT) .
By the proof we have lim ):tzw(t) = 0 almost surely and so the limiting
variance of nli(ﬁT—uT) t;:s no component corresponding to pZz and thus is
given by (A.5.4) corresponding to ﬁ'le only. Consistency of the estimator
of this variance follows by similar arguments to those used in the proof

of Theorem 4.2.3, noting also the remarks on consistency of i, on page 58. 0

T

Note that

i J ((1-F) (1-F_) (1-1_)) " &F =

- - -2
J 72 ((1-m (1-F ) (1-1_)) "leF + J (J((l—F)(l—F_)(l—L_)) 1dF>d(u )

so that (A.5.2) implies that the limit in (A.5.1) exists, but not neces-
sarily that it is zero (cf. the remarks after Theorem 4.2.3).

In the case of no censoring, these conditions become

2 F(t) _

Umw 5 -0

the

® -2 F(t) N
Jo He d(1 - F(t)) <

since by (A.4.7)

and
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((1-F) (1-F_)) " aF = (22 = a(t- (1-F) 1.

Now

-2 _F(t)  _ Jt 12 g Fls)

Yy T - F(o) s YT T FE)

[ Uz oy an
+ 2 ] (1 = (1-F(s)) u(s)du(s)

t
-2 F(s) ,_,[-= -2 -2
J Hs d(l - F(s)) 2 J Mg ds + L Yo-

We have

Thus

t t
-2 k) _ (52 _2-2 -2 F(t)
Jo bs TR T Jo VAR = gmu) R TR (g

and conditions (A.5.1) and (A.5.2) are in the case of no censoring equiva-

lent to

-2 _F(t)
(A.5.5) var(X,) < ® and lim ¢ - 0.
3 o " T-F (D)
Now
5 E) ,
GO ERESO PR JOREES P

so a slightly stronger assumption is

var(X.) < e and 1lim sup E(X,-t|x, > t) < «.
J P J J
This certainly holds when F has an increasing hazard rate which is the
case for many realistic limetime models (e.g. gamma distribution, Weibull
distribution with shape parameter > 1, exponential distribution, normal
distribution. The lognormal distribution does not have an increasing
hazard rate but (A.5.5) is satisfied for it too).

As a second example consider the case of an exponential distribution
with exponentially distributed censoring, 1-F(t) = e % and 1-1"(t) = e_Bt

for all n, so that B represents the degree of censoring. It is now easy
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to check that (A.5.1) and (A.5.2) hold if and only if B < 1. In this case

Et = e_t and T tends to infinity like log n so that nlz U +P 0 as n—» o,

T
and we have

n* () oy NGO,

as n > ®,
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Appendix 6

Proof of a theorem of Daniels

Here we sketch a proof inspired by TAKACS (1967) though our argument
is geometric rather than combinatorial.

THEOREM A.6.1 (DANIELS (1945), ROBBINS (1954)). Let F be the empirical
distribution function based on a random sample of size n from the contin-

uous distribution function F. Then
P(F(t) < 871 F(t) V&) = 1-8 VB e [0,1].

PROOF. It suffices to consider the case when F is the uniform distribution
on [0,1]. Extend indefinitely and repetitively the graph of F and of 8™ lr
as in Figure A.6.1. We imagine the extended graph of F as a staircase or
mountain side, on which the sun shines with rays parallel to the line B-IF.
The probability required is the probability that at O the sun can be seen,
or alternatively 1 minus the probability that O is in shadow.

Let Y1 < .. < Yn be the order statistics of the random sample and
define Yn+r =1 +Yr, r =1,...,n. Let R be a random variable uniformly
distributed on {1,...,n} independently of the sample, and condition on
the horizontal step lengths 2

Y geuus Zn=Y (i.e. we

1% Yre1” ¥R Rén " ‘Rén-1

forget that it is a step of length Yn+1 - Yn on which O lies, and condi-

tion only on the shape of the staircase). Itis easy to see that conditional
on these lengths, the point O lies uniformly distributed on the horizontal
sections Zl"" 'Zn (Z;l:l Zi = 1). Now of these sections a length exactly

1-8 is in the light and B is in shadow (see Figure A.6.1; there are points
in the light even if O is not). Thus conditional on ZI’ ...,Zn the required

probability is 1- 8 and unconditionally it must be too. 0O

/ 1

e B 1-B —
B_1F/——\ T~ F
0
: - t
Figure A.6.1. 1
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