Algorithmic + Geometric characterization of CAR (Coarsening at Random)

Richard Gill - Utrecht Leiden Peter Grünwald - CWI Amsterdam

both EURANDOM, Eindhoven

arXiv.org: math.ST/0510276

Ann. Statist. to appear

Coarsening

Underlying data

Observation

Observed data

 $law_{\theta}(X)$

 $law_{\phi}(Y|X)$

 $law_{\theta,\phi}(Y)$

 $X = x \in E$

observe
$$Y = A \subseteq E$$

 $\#E < \infty$

$$A \ni x$$

Notation: $y \equiv A$

Examples (?)

- partition (fixed, or random but independent)
 CCAR
- 3 door problem X=door with car behind Y=two doors still closed
 = {your first choice, other door left closed}

 forgetful

quizplayer

3 door problem
X=door with car behind
Y=(your first choice, other door left closed)

Coarsening AT RANDOM

- ${\bf \circ}$ can do statistical analysis of data at face value ie, as if we observe $\mathbb{1}\{X\in y\}$
- lacktriangle Likelihood is $\mathrm{P}_{ heta}(X \in y)$
- Can use naieve EM

Coarsening at Random

IS

$$P_{\phi}(Y = y | X = x)$$
 is same for all $x \in y$

 $P_{\theta,\phi}(Y=y) = P_{\phi}(Y=y|X=x) \cdot P_{\theta}(X \in y)$

$$\int _{\operatorname{any}} x \in y$$

How to simulate an arbitrary CAR mechanism?

WRONG ANSWER:

- $oldsymbol{\circ}$ generate x from $\operatorname{law}_{ heta}(X)$
- \bullet generate y from $law_{\phi}(Y|X=x)$
- o report Y=y

Gill, vdLaan, Robins

- * "randomized monotone coarsening"?
 but ∃ CAR models which are not RMC
- ø honest CAR

 ← RMC ?

Grünwald and Halpern

 σ cute CAR algorithms but which are frail, ie, become non CAR under perturbation of parameters --- need delicate fine tuning

Manfred Jaeger (Ålborg, CS)

- ø robust CAR ← CCAR
- \circ honest CAR \iff CCAR

Gill and Grünwald

$$\pi_A = \pi_A^x = P(Y = A | X = x)$$

$$\sum_{A\ni x} \pi_A = 1 \quad \forall x \in E$$

linear equalities

$$\pi_A \ge 0 \quad \forall A$$

Gill and Grünwald (Jaeger almost):

$$\vec{\pi} = (\pi_A : A \subseteq E)$$

- @ every CAR $\overrightarrow{\pi}$ is a mixture of extreme CAR models
- each extreme CAR has rational probabilities
- rational CAR \(\ightarrow \) random uniform multicover

- $\ensuremath{\text{@}}$ multicover $\ensuremath{\mathcal{A}}$: set of nonempty subsets of E, allowing multiplicity, covering E
- \circ uniform multicover: each \times in E is in the same number of elements of $\mathcal A$
- @ depth of uniform multicover: this number
- rational CAR $\iff \exists$ uniform multicover \mathcal{A} given x in E, choose element of \mathcal{A} covering x, uniformly at random, ie, prob = 1 / depth

PROOF:

- Intersection of rational hyperplanes is rational point
- \bullet take LCM, write rational $\pi_A = n_A/n$ multiplicity depth

$$\sum_{A\ni x} n_A = n \quad \forall x \in E$$

every CAR is mixture of extreme (rational)
CAR

- every CAR has nice, robust (?) algorithmic description
- but obviously, dishonest when depth > 1

But unattractive when depth is very large So, HOW LARGE COULD IT BE ??

▼ VERY LARGE! : Fibonacci CAR

FURTHER CHARACTERIZATION:

Extreme CAR \equiv multicover unique for its support

- \bullet $M_{\mathcal{A}}$ = incidence matrix of support of \mathcal{A}
- ${\bf \Phi}$ ${\cal A}$ is extreme iff $M_{\cal A}\,\vec x\,=\,\vec 1$ has unique positive solution

Fibonacci CAR

- #E = 1 : only one CAR; it is Fibonnaci
- #E = 2m+1 :

 - add two points to E
 - add ONE of the new points to each coarsening in OLD support
 - add to support: {OTHER new point, all old points}
 - add to support: {two new points}

DEFINE: $F_0 = F_1 = 1; F_n = F_{n-1} + F_{n-2}$

CLAIMS:

 ${\rm 800}~M_{\rm A}\,\vec{x}=\vec{1}~{\rm 100}~{\rm 100}~{\rm$

$$\pi_{A_i} = x_{A_i} = F_i/F_n, i = 0, \dots, n-1$$

PROOF: Induction

CONCLUSION: The maximal depth of extremal CAR grows at least exponentially with n

FINAL REMARKS

- orobustness is what you make of it
- a cute algorithm is not necessarily a NATURE-al mechanism
- Fibonnaci (3) is the forgetful quizplayer:
 is there a natural mechanism for Fibonnaci (2m+1)?
- statistical inference with non-CCAR CAR
- statistical inference with non-CAR
- relative CAR -> useful non CAR models?