Analytic Number Theory Fall 2016, Assignment 1
Deadline: Monday October 17

e Don’t forget to write your name and student number on your homework. To
simplify the grading, it is preferable that you submit your homework in latex.

e You may either submit your homework at the course, or to Marc Paul Noordman,
or send him an electronic version of it by email.

e The number of points for each exercise is indicated in the left margin.

The total number of points is 70. Grade=(number of points)/7.

1.a) Let k be a positive integer. Prove that
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Hint. Split the integral into f2f(x) + [ f(z) for a well-chosen function f(z) with
2 < f(z) < = and estimate both parts from above.

b) Using integration by parts, prove that for every integer n > 0,
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Remark. The error term will increase with n. So the finite sum cannot be ex-
panded into an infinite series.

2. Euclid’s proof that there are infinitely many primes runs as follows. Suppose there

are only finitely many primes, pi,ps,...,pn, say. Consider the number P :=
pip2 -+ Pn + 1. Then either P itself is a prime or P is divisible by a prime but
in both cases, this prime must be different from py,...,p,. Thus we arrive at a
contradiction.

In certain cases, it is possible to give a similar proof for the fact that there are
infinitely many primes p with p = a (mod ¢). Assume there are only finitely many
such primes, py,...,p,, say. Construct a function P(py,...,p,) which is divisible
by a prime which is congruent to @ modulo ¢ but which is different from py, ..., p,.



3 a) Let p be a prime with p = 3 (mod 4). Show that there is no integer z with 2? = —
(mod p).
Hint. Suppose there does exist such an integer x. Consider the order of x (mod
p) in the multiplicative group (Z/pZ)* of non-zero residue classes modulo p.

3 b) Show that there are infinitely many primes p with p =1 (mod 4).
Hint. Take P(py,...,p,) = 4(pipa-- pn)? + 1.

4 ¢) Show that there are infinitely many primes p with p = 3 (mod 4).
(You have to find yourself a suitable expression P(p1,...,pn).)

5 d) Let p, q be distinct prime numbers with ¢ > 3, p # 1 (mod ¢). Prove that there is
no integer x with 1 +z + 2% +---+ 297! =0 (mod p).

) e) Let ¢ be a prime number > 3. Prove that there are infinitely many primes p with
p=1 (mod q).

3. In this exercise you are asked to prove Bertrand’s postulate: for every positive
integer n there is a prime number p with n < p < 2n. You have to use the
theorems and lemmas proved in Chapter 1 of the lecture notes.

4 a) Prove that for every real x > 2 we have [ ., p < 4% (product taken over all prime
numbers < z).
Hint. Let m := [z]|, and proceed by induction on m. If m is even, you can
immediately apply the induction hypothesis. Assume that m = 2k + 1 is odd and

consider [, pcopi1P-
It suffices to prove Bertrand’s postulate for n > 1000 since the remaining cases can

be verified by straightforward computation. In b),c),d) below let n be an integer
> 1000, and assume that there is no prime p with n < p < 2n.

) b) Prove that the binomial coefficient (277) is not divisible by any prime p with %n <
p<n.
Hint. Compute ord,( (27?) ).

4 c) Prove that (*") < (2n)"(V27) . 420/3,
Hint. Write (2:) = plfl e pft with p; distinct primes and k; > 0 and split into
primes p; with p; < v/2n and p; > /2n; for the latter, k; = 1.

2 d) Derive a contradiction.



We describe a general method to compute series > -, f(n), where f is an even
meromorphic function on C, i.e., f(z) = f(—2) for z € C minus the poles of f.
Let N be an integer > 1 and let Sy be the square through the four points
+(N + 3) & (N + 3)i, traversed counterclockwise. Assume that f has only finitely
many poles, and that none are lying at the non-zero integers.

o
1) Compute 7{ ;TL(Z)l - dz, using the Residue Theorem.
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where 7 is a path in C, g : v — C is a continuous function, and L(y) denotes the
length of «v. Applying this estimate with v = Sy, one has to show that the upper
bounds converges to 0 as N — oo.

-dz = 0. Here, you have to use the general in-

equality

< L(v) -sup|g(z)l,
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The following lemma, of which we have included a proof here, is crucial in 2).

Lemma. There is a constant ¢ > 0, independent of N, such that [e*™* — 1| > ¢
holds for all integers N > 1 and all z € Sy.

Proof. We consider the four edges of the square separately. First consider the edge
from (N +1)(=1—1i) to (N +3)(1—1). This can be parametrized by (N + 3)(t —1)
with —1 <t < 1. So for the points z on this edge we have
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Next, consider the edge from (N + £)(1 —4) to (N 4 3)(1 4+ i). This can be
parametrized by (N + 3)(1 +it) with —1 <t < 1. So for the points z on this edge
we have

|e27riz 1= ’ezm‘(NJr%)(Hit) —1=]- 6727r(N+%)t —1| > 1.
Here we have used that e2™(¥+2) = —1. The other two edges can be treated in the
same manner. ]

Let f be a meromorphic function on C that has no poles or zeros at the non-zero

2mif(z
integers. Prove that the function 2—()1 has residue f(k) at z = k for every
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non-zero integer k.
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Using the method sketched above, prove that
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7 b) The Bernouilli numbers B, are given by Z — 2" (2 € C, [7] < 2m).
n!

n=0

C(2k) = (—1)‘“—122’“-1% -k fork=1,2,....

5. Consider the Dirichlet series
F(s)=17°=2"43°=4"457°—-6°"4---,
G(s)=17°4+27°—-2x3°4+47°+5°=2xX6°+---

4 a) Prove that F(s), G(s) converge, and are analytic on {s € C: Res > 0}.
4 b) Prove that for s € C with Res > 1 we have

F(s)=(1-2"Y n G(s)=(1-3")> n"

7 ¢) Use a) and b) to prove that Y >°, n~® can be continued to an analytic function
((s) on {s € C: Res > 0} \ {1}, with a simple pole with residue 1 at s = 1, i.e.,
C(s) =>_" n®if Res > 1, and lim,_,;(s — 1){(s) = 1.
Hint. Both functions 1 — 2'7% 1 — 3!~ have infinitely many zeros in C. Which
zeros do they have in common?



