
Analytic Number Theory Fall 2016, Assignment 1

Deadline: Monday October 17

• Don’t forget to write your name and student number on your homework. To

simplify the grading, it is preferable that you submit your homework in latex.

• You may either submit your homework at the course, or to Marc Paul Noordman,

or send him an electronic version of it by email.

• The number of points for each exercise is indicated in the left margin.

The total number of points is 70. Grade=(number of points)/7.

5 1.a) Let k be a positive integer. Prove that∫ x

2

dt

(log t)k
= O

( x

(log x)k

)
as x→∞.

Hint. Split the integral into
∫ f(x)
2

+
∫ x
f(x)

for a well-chosen function f(x) with

2 ≤ f(x) < x and estimate both parts from above.

5 b) Using integration by parts, prove that for every integer n > 0,

Li(x) :=

∫ x

2

dt

log t
=

n∑
i=1

(i− 1)!
x

(log x)i
+O

( x

(log x)n+1

)
as x→∞.

Remark. The error term will increase with n. So the finite sum cannot be ex-

panded into an infinite series.

2. Euclid’s proof that there are infinitely many primes runs as follows. Suppose there

are only finitely many primes, p1, p2, . . . , pn, say. Consider the number P :=

p1p2 · · · pn + 1. Then either P itself is a prime or P is divisible by a prime but

in both cases, this prime must be different from p1, . . . , pn. Thus we arrive at a

contradiction.

In certain cases, it is possible to give a similar proof for the fact that there are

infinitely many primes p with p ≡ a (mod q). Assume there are only finitely many

such primes, p1, . . . , pn, say. Construct a function P (p1, . . . , pn) which is divisible

by a prime which is congruent to a modulo q but which is different from p1, . . . , pn.
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3 a) Let p be a prime with p ≡ 3 (mod 4). Show that there is no integer x with x2 ≡ −1

(mod p).

Hint. Suppose there does exist such an integer x. Consider the order of x (mod

p) in the multiplicative group (Z/pZ)∗ of non-zero residue classes modulo p.

3 b) Show that there are infinitely many primes p with p ≡ 1 (mod 4).

Hint. Take P (p1, . . . , pn) = 4(p1p2 · · · pn)2 + 1.

4 c) Show that there are infinitely many primes p with p ≡ 3 (mod 4).

(You have to find yourself a suitable expression P (p1, . . . , pn).)

5 d) Let p, q be distinct prime numbers with q ≥ 3, p 6≡ 1 (mod q). Prove that there is

no integer x with 1 + x+ x2 + · · ·+ xq−1 ≡ 0 (mod p).

5 e) Let q be a prime number ≥ 3. Prove that there are infinitely many primes p with

p ≡ 1 (mod q).

3. In this exercise you are asked to prove Bertrand’s postulate: for every positive

integer n there is a prime number p with n < p ≤ 2n. You have to use the

theorems and lemmas proved in Chapter 1 of the lecture notes.

4 a) Prove that for every real x ≥ 2 we have
∏

p≤x p ≤ 4x (product taken over all prime

numbers ≤ x).

Hint. Let m := [x], and proceed by induction on m. If m is even, you can

immediately apply the induction hypothesis. Assume that m = 2k + 1 is odd and

consider
∏

k+1<p≤2k+1 p.

It suffices to prove Bertrand’s postulate for n ≥ 1000 since the remaining cases can

be verified by straightforward computation. In b),c),d) below let n be an integer

≥ 1000, and assume that there is no prime p with n < p ≤ 2n.

5 b) Prove that the binomial coefficient
(
2n
n

)
is not divisible by any prime p with 2

3
n <

p ≤ n.

Hint. Compute ordp
((

2n
n

))
.

4 c) Prove that
(
2n
n

)
≤ (2n)π(

√
2n) · 42n/3.

Hint. Write
(
2n
n

)
= pk11 · · · pktt with pi distinct primes and ki > 0 and split into

primes pi with pi ≤
√

2n and pi >
√

2n; for the latter, ki = 1.

2 d) Derive a contradiction.
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4. We describe a general method to compute series
∑∞

n=1 f(n), where f is an even

meromorphic function on C, i.e., f(z) = f(−z) for z ∈ C minus the poles of f .

Let N be an integer ≥ 1 and let SN be the square through the four points

±(N + 1
2
)± (N + 1

2
)i, traversed counterclockwise. Assume that f has only finitely

many poles, and that none are lying at the non-zero integers.

1) Compute

∮
SN

2πif(z)

e2πiz − 1
· dz, using the Residue Theorem.

2) Prove that lim
N→∞

∮
SN

2πif(z)

e2πiz − 1
· dz = 0. Here, you have to use the general in-

equality ∣∣∣∣∫
γ

g(z)dz

∣∣∣∣ ≤ L(γ) · sup
z∈γ
|g(z)|,

where γ is a path in C, g : γ → C is a continuous function, and L(γ) denotes the

length of γ. Applying this estimate with γ = SN , one has to show that the upper

bounds converges to 0 as N →∞.

The following lemma, of which we have included a proof here, is crucial in 2).

Lemma. There is a constant c > 0, independent of N , such that |e2πiz − 1| ≥ c

holds for all integers N ≥ 1 and all z ∈ SN .

Proof. We consider the four edges of the square separately. First consider the edge

from (N + 1
2
)(−1− i) to (N + 1

2
)(1− i). This can be parametrized by (N + 1

2
)(t− i)

with −1 ≤ t ≤ 1. So for the points z on this edge we have

|e2πiz − 1| = |e2πi(N+ 1
2
)(t−i) − 1| = |e2πi(N+ 1

2
)te2π(N+ 1

2
) − 1|

≥ e2π(N+ 1
2
) − 1 ≥ e3π − 1.

Next, consider the edge from (N + 1
2
)(1 − i) to (N + 1

2
)(1 + i). This can be

parametrized by (N + 1
2
)(1 + it) with −1 ≤ t ≤ 1. So for the points z on this edge

we have

|e2πiz − 1| = |e2πi(N+ 1
2
)(1+it) − 1| = | − e−2π(N+ 1

2
)t − 1| ≥ 1.

Here we have used that e2πi(N+ 1
2
) = −1. The other two edges can be treated in the

same manner. �

3 a) Let f be a meromorphic function on C that has no poles or zeros at the non-zero

integers. Prove that the function
2πif(z)

e2πiz − 1
has residue f(k) at z = k for every

non-zero integer k.



4

7 b) The Bernouilli numbers Bn are given by
z

ez − 1
=
∞∑
n=0

Bn

n!
zn (z ∈ C, |z| < 2π).

Using the method sketched above, prove that

ζ(2k) = (−1)k−122k−1 B2k

(2k)!
· π2k for k = 1, 2, . . ..

5. Consider the Dirichlet series

F (s) = 1−s − 2−s + 3−s − 4−s + 5−s − 6−s + · · · ,
G(s) = 1−s + 2−s − 2× 3−s + 4−s + 5−s − 2× 6−s + · · ·

4 a) Prove that F (s), G(s) converge, and are analytic on {s ∈ C : Re s > 0}.

4 b) Prove that for s ∈ C with Re s > 1 we have

F (s) = (1− 21−s)
∞∑
n=1

n−s, G(s) = (1− 31−s)
∞∑
n=1

n−s.

7 c) Use a) and b) to prove that
∑∞

n=1 n
−s can be continued to an analytic function

ζ(s) on {s ∈ C : Re s > 0} \ {1}, with a simple pole with residue 1 at s = 1, i.e.,

ζ(s) =
∑∞

n=1 n
−s if Re s > 1, and lims→1(s− 1)ζ(s) = 1.

Hint. Both functions 1 − 21−s, 1 − 31−s have infinitely many zeros in C. Which

zeros do they have in common?


