
Chapter 5

The Riemann zeta function and

L-functions

5.1 Basic facts

We prove some results that will be used in the proof of the Prime Number Theorem

(for arithmetic progressions). The L-function of a Dirichlet character χ modulo q is

defined by

L(s, χ) =
∞∑
n=1

χ(n)n−s.

We view ζ(s) =
∑∞

n=1 n
−s as the L-function of the principal character modulo 1,

more precisely, ζ(s) = L(s, χ
(1)
0 ), where χ

(1)
0 (n) = 1 for all n ∈ Z.

We first prove that ζ(s) has an analytic continuation to {s ∈ C : Re s > 0}\{1}.
We use an important summation formula, due to Euler.

Lemma 5.1 (Euler’s summation formula). Let a, b be integers with a < b and

f : [a, b]→ C a continuously differentiable function. Then

b∑
n=a

f(n) =

∫ b

a

f(x)dx+ f(a) +

∫ b

a

(x− [x])f ′(x)dx.
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Remark. This result often occurs in the more symmetric form

b∑
n=a

f(n) =

∫ b

a

f(x)dx+ 1
2
(f(a) + f(b)) +

∫ b

a

(x− [x]− 1
2
)f ′(x)dx.

Proof. Let n ∈ {a, a+ 1, . . . , b− 1}. Then∫ n+1

n

(
x− [x]

)
f ′(x)dx =

∫ n+1

n

(x− n)f ′(x)dx

=
[
(x− n)f(x)

]n+1

n
−
∫ n+1

n

f(x)dx = f(n+ 1)−
∫ n+1

n

f(x)dx.

By summing over n we get∫ b

a

(x− [x])f ′(x)dx =
b∑

n=a+1

f(n)−
∫ b

a

f(x)dx,

which implies at once Lemma 5.1.

Theorem 5.2. ζ(s) has a unique analytic continuation to the set

{s ∈ C : Re s > 0, s 6= 1}, with a simple pole with residue 1 at s = 1.

Proof. By Corollary 2.4 we know that an analytic continuation of ζ(s), if such exists,

is unique.

For the moment, let s ∈ C with Re s > 1. Then by Lemma 5.1, with f(x) = x−s,

N∑
n=1

n−s =

∫ N

1

x−sdx+ 1 +

∫ N

1

(x− [x])(−sx−1−s)dx

=
1−N1−s

s− 1
+ 1− s

∫ N

1

(x− [x])x−1−sdx.

If we let N → ∞ then the left-hand side converges, and also the first term on the

right-hand side, since |N−1−s| = N−1−Re s → 0. Hence the integral on the right-hand

side must converge as well. Thus, letting N →∞, we get for Re s > 1,

(5.1) ζ(s) =
1

s− 1
+ 1− s

∫ ∞
1

(x− [x])x−1−sdx.
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We now show that the integral on the right-hand side defines an analytic function

on U := {s ∈ C : Re s > 0}, by means of Theorem 2.6.

The function F (x, s) := (x− [x])x−1−s is measurable on [1,∞)×U (by, e.g., the

fact that its set of discontinuities has Lebesgue measure 0) and for every fixed x it

is analytic in s.

Let K be a compact subset of U . Then there is σ > 0 such that Re s > σ for all

s ∈ K. Now for x > 1 and s ∈ K we have

|(x− [x])x−1−s| 6 x−1−σ

and
∫∞
1
x−1−σdx < ∞. Hence all conditions of Theorem 2.6 are satisfied, and we

may indeed conclude that the integral on the right-hand side of (5.1) defines an

analytic function on U .

Consequently, the right-hand of (5.1) is analytic on {s ∈ C : Re s > 0, s 6= 1}
and it has a simple pole at s = 1 with residue 1. We may take this as our analytic

continuation of ζ(s).

Theorem 5.3. Let q ∈ Z>2, and let χ be a Dirichlet character mod q.

(i) L(s, χ) =
∏

p(1− χ(p)p−s)−1 for s ∈ C, Re s > 1.

(ii) If χ 6= χ
(q)
0 , then L(s, χ) converges, and is analytic on {s ∈ C : Re s > 0}.

(iii) L(s, χ
(q)
0 ) can be continued to an analytic function on {s ∈ C : Re s > 0, s 6= 1},

and for s in this set we have

L(s, χ
(q)
0 ) = ζ(s) ·

∏
p|q

(1− p−s).

Hence L(s, χ
(q)
0 ) has a simple pole at s = 1.

Proof. (i) χ is a strongly multiplicative function, and L(s, χ) converges absolutely

for Re s > 1. Apply Corollary 3.14.

(ii) Let N be any positive integer. Then N = tq + r for certain integers t, r

with t > 0 and 0 6 r < q. By one of the orthogonality relations for characters (see

Theorem 4.11), we have
∑q

m=1 χ(m) = 0,
∑2q

m=q+1 χ(m) = 0, etc. Hence∣∣∣∣∣
N∑
n=1

χ(n)

∣∣∣∣∣ =
∣∣∣χ(tq + 1) + · · ·+ χ(tq + r)

∣∣∣ 6 r < q.
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This last upper bound is independent of N . Now Theorem 3.2 implies that the

L-series L(s, χ) converges and is analytic on Re s > 0.

(iii) By (i) we have for Re s > 1,

L(s, χ
(q)
0 ) =

∏
p-q

(1− p−s)−1 = ζ(s)
∏
p|q

(1− p−s).

The right-hand side is defined and analytic on {s ∈ C : Re s > 0, s 6= 1}, and so it

can be taken as an analytic continuation of L(s, χ
(q)
0 ) on this set.

Corollary 5.4. Both ζ(s) and L(s, χ) for any character χ modulo an integer q > 2

are 6= 0 on {s ∈ C : Re s > 1}.

Proof. Use part (i) of the above theorem, together with Corollary 3.14.

5.2 Non-vanishing on the line Re s = 1

We prove that ζ(s) 6= 0 if Re s = 1 and s 6= 1, and L(s, χ) 6= 0 for any s ∈ C with

Re s = 1 and any non-principal character χ modulo an integer q > 2. We have

to distinguish two cases, which are treated quite differently. We interpret ζ(s) as

L(s, χ
(1)
0 ).

Theorem 5.5. Let q ∈ Z>1, χ a character mod q, and t a real. Assume that either

t 6= 0, or t = 0 but χ2 6= χ
(q)
0 . Then L(1 + it, χ) 6= 0.

Proof. We use a famous idea, due to Hadamard. It is based on the inequality

(5.2) 3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 > 0 for θ ∈ R.

Suppose that L(1 + it, χ) = 0. Consider the function

F (s) := L(s, χ
(q)
0 )3 · L(s+ it, χ)4 · L(s+ 2it, χ2).

By our assumption on χ and t, L(s + 2it, χ2) is analytic around s = 1. Further,

L(s, χ
(q)
0 ) has a simple pole at s = 1, while L(s+ it, χ) has by assumption a zero at

s = 1. Hence

ords=1(F ) = 3 · ords=1

(
L(s, χ

(q)
0 )
)

+ 4 · ords=1

(
L(s+ it, χ)

)
+ ords=1

(
L(s+ 2it, χ2)

)
> −3 + 4 = 1.
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This shows that F is analytic around s = 1, and has a zero at s = 1. We now prove

that |F (σ)| > 1 (or rather, log |F (σ)| > 0) for σ > 1. This gives a contradiction since

by continuity, limσ↓1 |F (σ)| should be 0. So our assumption that L(1 + it, χ) = 0

must be false.

From the definition of the function F we obtain

log |F (σ)| = log
∏
p

∣∣∣∣∣ 1

1− χ(q)
0 (p)p−σ

∣∣∣∣∣
3

·
∣∣∣∣ 1

1− χ(p)p−σ−it

∣∣∣∣4 · ∣∣∣∣ 1

1− χ(p)2p−σ−2it

∣∣∣∣


=
∑
p-q

(
3 log

∣∣∣∣ 1

1− p−σ

∣∣∣∣+ 4 log

∣∣∣∣ 1

1− χ(p)p−σ−it

∣∣∣∣+ log

∣∣∣∣ 1

1− χ(p)2p−σ−2it

∣∣∣∣) .
Note that if p - q then χ(p) is a root of unity. Hence |χ(p)p−it| = |χ(p)e−it log p| = 1.

So we have χ(p)p−it = eiϕp with ϕp ∈ R. Hence

log |F (σ)| =
∑
p-q

(
3 log

∣∣∣∣ 1

1− p−σ

∣∣∣∣+ 4 log

∣∣∣∣ 1

1− p−σeiϕp

∣∣∣∣+ log

∣∣∣∣ 1

1− p−σe2iϕp

∣∣∣∣) .
Recall that

log
1

1− z
=
∞∑
n=1

zn/n, log

∣∣∣∣ 1

1− z

∣∣∣∣ = Re log
1

1− z
for z ∈ C with |z| < 1.

Hence for r, ϕ ∈ R with 0 < r < 1,

log

∣∣∣∣ 1

1− reiϕ

∣∣∣∣ = Re

(
log

1

1− reiϕ

)
= Re

(
∞∑
n=1

(reiϕ)n

n

)

=
∞∑
n=1

rn

n
Re (einϕ) =

∞∑
n=1

rn

n
· cosnϕ.

This leads to

log |F (σ)| =
∑
p-q

(
3
∞∑
n=1

p−nσ

n
+ 4

∞∑
n=1

p−nσ

n
· cosnϕp +

∞∑
n=1

p−nσ

n
cos 2nϕp

)

=
∑
p-q

∞∑
n=1

p−nσ

n
(3 + 4 cosnϕp + cos 2nϕp) > 0,

using (5.2). This shows that indeed, |F (σ)| > 1 for σ > 1, giving us the contradiction

we want.
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It remains to prove that L(1, χ) 6= 0 for any character χ mod q such that χ 6= χ
(q)
0 ,

χ2 = χ
(q)
0 , i.e., for any real character χ not equal to the principal character. Dirichlet

needed this fact already in his proof that for every pair of integers q, a with q > 3

and gcd(a, q) = 1 there are infinitely many primes p with p ≡ a (mod q). Dirichlet

had a rather complicated proof that L(1, χ) 6= 0, based on Dirichlet series associated

with quadratic forms (in modern language: Dedekind zeta functions for quadratic

number fields) and class number formulas.

Landau found a much more direct proof, which we give here, based on a simple

result for Dirichlet series, which more or less asserts that a Dirichlet series with non-

negative real coefficients can not be continued analytically beyond the boundary of

its half plane of convergence.

Lemma 5.6 (Landau). Let f : Z>0 → R be an arithmetic function with f(n) > 0

for all n. Suppose that Lf (s) =
∑∞

n=1 f(n)n−s has abscissa of convergence σ0.

Then Lf (s) cannot be continued analytically to any open set containing {s ∈ C :

Re s > σ0} ∪ {σ0}.

Proof.

Suppose Lf (s) can be continued to an ana-

lytic function g(s) on an open set containing

{s ∈ C : Re s > σ0} ∪ {σ0}. Then there is

δ > 0 such that g(s) is analytic on the open

disk D(σ0, δ) with center σ0 and radius δ. Let

σ1 := σ0 + δ/3. Then D(σ1, 2δ/3) ⊂ D(σ0, δ),

so g(s) is analytic and has a Taylor series ex-

pansion around σ1 converging on D(σ1, 2δ/3).

Now let σ0 − δ/3 < σ < σ0, so that σ ∈
D(σ1, 2δ/3). Using the Taylor series expan-

sion of g(s) around σ1, we get

g(σ) =
∞∑
k=0

g(k)(σ1)

k!
· (σ − σ1)k.
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Since σ1 is larger than the abscissa of convergence σ0 of Lf (s), we have

g(k)(σ1) = L
(k)
f (σ1) =

∞∑
n=1

f(n)(− log n)kn−σ1 for k > 0.

Hence

g(σ) =
∞∑
k=0

1

k!

(
∞∑
n=1

f(n)(− log n)kn−σ1

)
(σ − σ1)k

=
∞∑
k=0

1

k!

(
∞∑
n=1

f(n)(log n)kn−σ1

)
(σ1 − σ)k.

Now all terms are non-negative, hence it is allowed to interchange the summations.

Thus,

g(σ) =
∞∑
n=1

f(n)n−σ1

(
∞∑
k=0

1

k!
(log n)k(σ1 − σ)k

)

=
∞∑
n=1

f(n)n−σe(logn)(σ1−σ) =
∞∑
n=1

f(n)n−σ1nσ1−σ =
∞∑
n=1

f(n)n−σ.

We see that Lf (s) converges for s = σ. But this is impossible, since σ is smaller

than the abscissa of convergence σ0 of Lf (s). So our initial assumption that Lf (s)

has an analytic continuation to an open set containing {s ∈ C : Re s > σ0} ∪ {σ0}
must have been false.

Remark. Lemma 5.6 becomes false if we drop the condition that f(n) > 0 for all n.

For instance, if χ is a non-principal character mod q, then L(s, χ) =
∑∞

n=1 χ(n)n−s

diverges if Re s < 0, but one can show that L(s, χ) has an analytic continuation to

the whole of C.

Theorem 5.7. Let q ∈ Z>2, and let χ be a character mod q with χ 6= χ
(q)
0 and

χ2 = χ
(q)
0 . Then L(1, χ) 6= 0.

Proof. Assume that L(1, χ) = 0. Consider the function

F (s) := L(s, χ)ζ(s).
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By Theorems 5.2, 5.3, this function is analytic at least on {s ∈ C : Re s > 0, s 6= 1}.
But the simple pole of ζ(s) at s = 1 is cancelled by the zero of L(s, χ). Hence F (s)

is analytic for all s with Re s > 0. We show that for s ∈ C with Re s > 1, F (s)

is expressable as a Dirichlet series with non-negative coefficients. By Lemma 5.6,

this Dirichlet series should have abscissa of convergence 6 0. But we show that the

abscissa of convergence of this series is > 1
2

and derive a contradiction.

The series ζ(s) =
∑∞

n=1 n
−s and

∑∞
n=1 χ(n)n−s converge absolutely if Re s > 1.

So by Theorem 3.12,

F (s) = Lf (s) =
∞∑
n=1

f(n)n−s for s ∈ C, Re s > 1,

where f = E ∗ χ, i.e.,

f(n) =
∑
d|n

χ(d) for n ∈ Z>0.

Hence f is a multiplicative function. We compute f in the prime powers. Since

χ2 = χ
(q)
0 , we have χ(n) = ±1 for all n ∈ Z with gcd(n, q) = 1, while χ(n) = 0 if

gcd(n, q) > 1. Hence, if p is a prime and k a non-negative integer, we have

f(pk) =
k∑
j=0

χ(p)j =


1 if p|q,

k + 1 if p - q, χ(p) = 1,

1 if p - q, χ(p) = −1, k even,

0 if p - q, χ(p) = −1, k odd.

Therefore, f(pk) > 0 for all prime powers pk. Since f is multiplicative, it follows

that f(n) > 0 for all n ∈ Z>0.

The series Lf (s) has an analytic continuation to {s ∈ C : Re s > 0}, that is,

F (s). So by Lemma 5.6, Lf (s) has abscissa of convergence σ0(f) 6 0. On the other

hand, from the above table and from the fact that f is multiplicative, it follows that

if n = m2 is a square, then f(n) > 1. Hence

Lf (σ) =
∞∑
n=1

f(n)n−σ >
∞∑
m=1

m−2σ =∞ if σ 6 1
2
.

So σ0(f) > 1
2
. This gives a contradiction, and so our assumption that L(1, χ) = 0

has to be false.
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5.3 Functional equations

Denote by Γ(s) Euler’s Gamma function (see Chapter 2). Define

ξ(s) := 1
2
s(s− 1)π−s/2Γ(1

2
s)ζ(s) = (s− 1)π−s/2Γ(1

2
s+ 1)ζ(s),

where we have used the identity 1
2
sΓ(1

2
s) = Γ(1

2
s+ 1).

Theorem 5.8. The function ξ has an analytic continuation to C.

For this continuation we have ξ(1− s) = ξ(s) for s ∈ C.

For the interested reader we have included a proof in the next section. See also H.

Davenport, Multiplicative Number Theory, Chapter 8.

We deduce some consequences.

Corollary 5.9. The function ζ has an analytic continuation to C\{1} with a simple

pole with residue 1 at s = 1.

For this continuation we have

ζ(1− s) = 21−sπ−s cos(1
2
πs)Γ(s) · ζ(s) for s ∈ C \ {0, 1}.

Proof. We define the analytic continuation of ζ by

ζ(s) =
ξ(s)πs/2 · 1/Γ(1

2
s+ 1)

s− 1
.

By Corollary 2.16, 1/Γ is analytic on C, and the other functions in the numerator

are also analytic on C. Hence ζ is analytic on C \ {1}. The analytic continuation

of ζ defined here coincides with the one defined in Theorem 5.2 on {s ∈ C : Re s >

0} \ {1} since analytic continuations to connected sets are uniquely determined.

Hence ζ(s) has a simple pole with residue 1 at s = 1.

We derive the functional equation. By Theorem 5.8 we have, for s ∈ C \ {0, 1},

ζ(1− s) =
ξ(1− s)

1
2
(1− s)(−s)π−(1−s)/2Γ(1

2
(1− s))

=
ξ(s)

1
2
s(s− 1)π−(1−s)/2Γ(1

2
(1− s))

=
1
2
s(s− 1)π−s/2Γ(1

2
s)

1
2
s(s− 1)π−(1−s)/2Γ(1

2
(1− s))

· ζ(s) = F (s)ζ(s),
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say. Now we have

F (s) = π(1/2)−s ·
Γ(1

2
s)Γ(1

2
s+ 1

2
)

Γ(1
2
− 1

2
s)Γ(1

2
+ 1

2
s)

= π(1/2)−s 21−s√πΓ(s)

π/ sin(π(1
2
− 1

2
s))

(by Corollary 2.22, Theorem 2.14)

= π−s21−s cos(1
2
πs)Γ(s).

This implies Corollary 5.9.

Corollary 5.10. ζ has simple zeros at s = −2,−4,−6, . . ..

ζ has no other zeros outside the critical strip {s ∈ C : 0 < Re s < 1}.

Proof. We first show that ξ(s) 6= 0 if Re s > 1 or Re s 6 0. We use the second

expression for ξ(s). By Corollary 5.4 and Theorem 5.5, we know that ζ(s) 6= 0 for

s ∈ C with Re s > 1, s 6= 1. Further, lims→1(s− 1)ζ(s) = 1, hence (s− 1)ζ(s) 6= 0 if

Re s > 1. By Corollary 2.16, we know that Γ(1
2
s+1) 6= 0 if Re s > 1. hence ξ(s) 6= 0

if Re s > 1. But then by Theorem 5.8, ξ(s) 6= 0 if Re s 6 0.

We consider ζ(s) for Re s 6 0. For s 6= −2,−4,−6, . . ., the function Γ(1
2
s+ 1) is

analytic. Further, for these values of s, we have ξ(s) 6= 0, hence ζ(s) must be 6= 0

as well. The function Γ(1
2
s) has simple poles at s = −2,−4,−6, . . .. To make ξ(s)

analytic and non-zero for these values of s, the function ζ must have simple zeros

at s = −2,−4,−6, . . ..

There are also functional equations for L-functions L(s, χ), in the case that χ is

a primitive character modulo an integer q > 2 (that is to say, χ is not induced by a

character modulo d for any proper divisor d of q).

Notice that for any character χ modulo q we have χ(−1)2 = χ(1) = 1, hence

χ(−1) ∈ {−1, 1}. A character χ is called even if χ(−1) = 1, and odd if χ(−1) = −1.

There will be different functional equations for even and odd characters.

In Chapter 4 we defined the Gauss sum related to a character χ mod q by

τ(1, χ) =

q−1∑
a=0

χ(a)e2πia/q.

According to Theorem 4.21, if χ is primitive then |τ(1, χ)| = √q.

By χ we denote the complex conjugate of a character χ.
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Theorem 5.11. Let q be an integer with q > 2, and χ a primitive character mod q.

Put

ξ(s, χ) :=
( q
π

)s/2
Γ(1

2
s)L(s, χ), c(χ) :=

√
q

τ(1, χ)
if χ is even,

ξ(s, χ) :=
( q
π

)(s+1)/2

Γ
(
1
2
(s+ 1)

)
L(s, χ), c(χ) :=

i
√
q

τ(1, χ)
if χ is odd.

Then ξ(s, χ) has an analytic continuation to C, and

ξ(1− s, χ) = c(χ)ξ(s, χ) for s ∈ C.

Remark. We know that |c(χ)| = 1. In general, it is a difficult problem to compute

c(χ) for large values of q.

The proof of Theorem 5.11 is similar to that of that of the functional equation

for ζ(s), but with some additional technicalities, see H. Davenport, Multiplicative

Number Theory, Chapter 9.

In the next exercise we have collected some consequences.

Exercise 5.1. Let q be an integer > 2 and χ a primitive character mod q.

a) Prove that L(s, χ) has an analytic continuation to C.

b) Prove the following:

if χ is even, then L(s, χ) has simple zeros at s = 0,−2,−4, . . . and L(s, χ) 6= 0 if

Re s < 0, s 6∈ {0,−2,−4, . . .};
if χ is odd, then L(s, χ) has simple zeros at s = −1,−3,−5, . . . and L(s, χ) 6= 0 if

Re s < 0, s 6∈ {−1,−3,−5, . . .}.
c) Prove a) and b) in the case that χ is non-principal, but not necessarily primitive.

5.4 Proof of the functional equation for the Rie-

mann zeta function

There are various methods to prove Theorem 5.8, see E.C. Titchmarsh, The theory

of the Riemann zeta function. We give Riemann’s proof based on a functional

equation for the Jacobi theta function θ(z) =
∑∞

m=−∞ e
−πm2z. We start with some

preparations.
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5.4.1 Poisson’s summation formula

We start with a simple result from Fourier analysis. Given an integrable function

f : [0, 1]→ C, we define the Fourier coefficients of f by

cn(f) :=

∫ 1

0

f(t)e−2πintdt for n ∈ Z.

Theorem 5.12. Let f be a complex analytic function, defined on an open subset of

C containing the real interval [0, 1]. Then

lim
N→∞

N∑
n=−N

cn(f)e2πinx =

{
1
2

(
f(0) + f(1)

)
if x = 0 or x = 1,

f(x) if 0 < x < 1.

Remarks 1. This version of Theorem 5.12 with the condition that f be analytic on

an open subset containing [0, 1] is amply sufficient for our purposes. There are much

more general versions of this theorem, which are of course much more difficult to

prove. For instance, Dirichlet proved the above theorem for functions f : [0, 1]→ C
that are differentiable and whose derivative is piecewise continuous.

2. It may be that a doubly infinite series
∑∞

n=−∞ an = limM,N→∞
∑N

n=−M an di-

verges, while limN→∞
∑N

n=−N an converges. For instance, if a−n = −an for n ∈
Z \ {0}, then limN→∞

∑N
n=−N an = a0, while

∑∞
n=−∞ an may be horribly divergent.

Proof. We first assume that either 0 < x < 1, or that x ∈ {0, 1} and f(0) = f(1).

We use the so-called Dirichlet kernel

DN(x) :=
N∑

n=−N

e2πinx = e−2πiNx
2N∑
n=0

e2πinx

= e−2πiNx · e
2πi(2N+1)x − 1

e2πix − 1

=
eπi(2N+1)x − e−πi(2N+1)x

eπix − e−πix
=

sin(2N + 1)πx

sin πx
.

Further, we use ∫ 1

0

e2πintdt =

{
1 if n = 0,

0 if n 6= 0.
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Using these facts, we obtain

f(x)−
N∑

n=−N

cn(f)e2πinx = f(x)−
N∑

n=−N

(∫ 1

0

f(t)e−2πintdt

)
e2πinx

=
N∑

n=−N

(∫ 1

0

f(x)e−2πintdt

)
e2πinx −

N∑
n=−N

(∫ 1

0

f(t)e−2πintdt

)
e2πinx

(the first integral is f(x) if n = 0 and 0 if n 6= 0)

=
N∑

n=−N

∫ 1

0

(
f(x)− f(t)

)
· e−2πin(t−x)dt

=

∫ 1

0

(
f(x)− f(t)

)( N∑
n=−N

e−2πin(t−x)

)
dt

=

∫ 1

0

(f(x)− f(t)
)
·

sin
(
(2N + 1)π(t− x)

)
sin π(t− x)

· dt.

Fix x and define

g(z) :=
f(x)− f(z)

sinπ(z − x)
.

We show that g is analytic on an open set containing [0, 1]. First, suppose that

0 < x < 1. By assumption, f is analytic on an open set U ⊂ C containing [0, 1]. By

shrinking U if needed, we may assume that U contains [0, 1] but not x + n for any

non-zero integer n. Then sinπ(z − x) has a simple zero at z = x but is otherwise

non-zero on U . This shows that g(z) is analytic on U \{x}. But g(z) is also analytic

at z = x, since the simple zero of sin π(z−x) is cancelled by the zero of f(x)−f(z).

In case that x ∈ {0, 1} and f(0) = f(1) one proceeds in the same manner.
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Using integration by parts, we obtain

f(x)−
N∑

n=−N

cn(f)e2πinx =

∫ 1

0

g(t) sin{(2N + 1)π(t− x)}dt

=
−1

(2N + 1)π

∫ 1

0

g(t)d cos{(2N + 1)π(t− x)}

=
−1

(2N + 1)π

{
g(1) cos{(2N + 1)π(1− x)} − g(0) cos{(2N + 1)πx}+

+

∫ 1

0

g′(t) cos{(2N + 1)π(t− x)}dt
}
.

Since g is analytic, the functions g(t), g′(t) are continuous, hence their absolute

values are bounded on [0, 1]. Further, the cosine terms have absolute values at most

1. It follows that the above expression converges to 0 as N →∞.

We are left with the case x ∈ {0, 1} and f(0) 6= f(1). Let

f̃(z) := f(z) + (f(0)− f(1))z.

Then f̃ is analytic on U and f̃(0) = f̃(1) = f(0). It is easy to check that the

function id : z 7→ z has Fourier coefficients c0(id) = 1
2
, cn(id) = −1/2πin for n 6= 0.

In particular, c−n(id) = −cn(id) for n 6= 0. Consequently,

lim
N→∞

N∑
n=−N

cn(f) = lim
N→∞

(
N∑

n=−N

cn(f̃) +
(
f(1)− f(0)

) N∑
n=−N

cn(id)

)
= f(0) + 1

2

(
f(1)− f(0)

)
= 1

2

(
f(0) + f(1)

)
.

This completes our proof.

Theorem 5.13 (Poisson’s summation formula for finite sums). Let a, b be integers

with a < b and let f be a complex analytic function, defined on an open set containing

the interval [a, b]. Then

b∑
m=a

f(m) = 1
2

(
f(a) + f(b)

)
+ lim

N→∞

N∑
n=−N

∫ b

a

f(t)e−2πintdt

= 1
2

(
f(a) + f(b)

))
+

∫ b

a

f(t)dt+ 2
∞∑
n=1

∫ b

a

f(t) cos 2πnt · dt.

114



Proof. Pick m ∈ {a, . . . , b− 1}. Then by Theorem 5.12,

1
2

(
f(m) + f(m+ 1)

)
= lim

N→∞

N∑
n=−N

∫ m+1

m

f(t)e−2πintdt

=

∫ m+1

m

f(t)dt+ lim
N→∞

N∑
n=1

∫ m+1

m

f(t)
(
e2πint + e−2πint

)
dt

=

∫ m+1

m

f(t)dt+ 2
∞∑
n=1

∫ m+1

m

f(t) cos 2πnt · dt.

Now take the sum over m = a, a+ 1, . . . , b− 1.

We need a variation on Theorem 5.13, dealing with infinite sums
∑∞

m=−∞ f(m).

Theorem 5.14. Let f be a complex function such that:

(i) there is δ > 0 such that f(z) is analytic on U(δ) := {z ∈ C : |Im z| < δ};
(ii) there are C > 0, ε > 0 such that

|f(z)| 6 C · (|z|+ 1)−1−ε for z ∈ U(δ).

Then
∞∑

n=−∞

f(n) = lim
N→∞

N∑
n=−N

∫ ∞
−∞

f(t)e−2πintdt.

The idea is to apply Theorem 5.12 to the function F (z) :=
∑∞

m=−∞ f(z + m).

We first prove some properties of this function.

Lemma 5.15. (i) F (0) = F (1) =
∑∞

m=−∞ f(m).

(ii) The function F (z) is analytic on an open set containing [0, 1].

(iii) For every n ∈ Z we have
∫ 1

0
F (t)e−2πintdt =

∫∞
−∞ f(t)e−2πintdt.

Proof. (i) Obvious.

(ii) Let U := {z ∈ C : −δ < Re z < 1 + δ, |Im z| < δ}. Assuming that

δ is sufficiently small, we have |f(z + m)| 6 C(|m| − δ)−1−ε =: Am for z ∈ U ,

m ∈ Z \ {0}. All summands f(z + m) are analytic on U , and the series
∑

m 6=0Am
converges. So by Corollary 2.10, the function F (z) is analytic on U .
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(iii) Since |f(t + m)e−2πint| 6 Am for t ∈ [0, 1], m ∈ Z \ {0}, and
∑

m 6=0Am
converges, the series

∑∞
m=∞ f(t+m)e−2πint converges uniformly on [0, 1]. Therefore,

we may interchange the integral and the infinite sum, and obtain∫ 1

0

F (t)e−2πintdt =

∫ 1

0

( ∞∑
m=−∞

f(t+m)
)
e−2πintdt =

∞∑
m=−∞

∫ 1

0

f(t+m)e−2πintdt

=
∞∑

m=−∞

f(t+m)e−2πin(t+m)dt =
∞∑

m=−∞

∫ m+1

m

f(t)e−2πintdt

=

∫ ∞
−∞

f(t)e−2πintdt.

In the last step we have used that the integral
∫∞
−∞ f(t)e−2πintdt converges, due to

our assumption |f(z)| 6 C(|z|+ 1)−1−ε for z ∈ U(δ).

Proof of Theorem 5.14. By combining Theorem 5.12 with Lemma 5.15 we obtain

∞∑
m=−∞

f(m) = 1
2

(
F (0) + F (1)

)
= lim

N→∞

N∑
n=−N

∫ 1

0

F (t)e−2πintdt

= lim
N→∞

N∑
n=−N

∫ ∞
−∞

f(t)e−2πintdt.

5.4.2 A functional equation for the theta function

The Jacobi theta function is given by

θ(z) :=
∞∑

m=−∞

e−πm
2z (z ∈ C, Re z > 0).

Verify yourself that θ(z) converges and is analytic on {z ∈ C : Re z > 0}.

Theorem 5.16. θ(z−1) =
√
z · θ(z) for z ∈ C, Re z > 0, where

√
z is chosen such

that | arg
√
z| < π

4
.
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Remark. Let A := {z ∈ C : Re z > 0}. We may choose the argument of z ∈ A
such that | arg z| < π/2. Then indeed, we may choose

√
z such that | arg

√
z| < π/4.

Proof. Both θ(z−1) and
√
zθ(z) are analytic on A. In view of Corollary 2.3, it suffices

to prove the identity in Theorem 5.16 on a subset of A having a limit point in A.

For this subset we take R>0. Thus, it suffices to prove that

∞∑
m=−∞

e−πm
2/x =

√
x ·

∞∑
m=−∞

e−πm
2x for x > 0.

We apply Theorem 5.14 to f(z) := e−πz
2/x with x > 0 fixed. Verify that f

satisfies all conditions of that Theorem. Thus, for any x > 0,

∞∑
m=−∞

e−πm
2/x = lim

N→∞

N∑
n=−N

∫ ∞
−∞

e−(πt
2/x)−2πintdt.

We compute the integrals by substituting u = t
√
x. Thus,∫ ∞

−∞
e−(πt

2/x)−2πintdt =
√
x ·
∫ ∞
−∞

e−πu
2−2πin

√
x·udu

=
√
x ·
∫ ∞
−∞

e−π(u+in
√
x)2−πn2xdu

=
√
xe−πn

2x

∫ ∞
−∞

e−π(u+in
√
x)2du.

In the lemma below we prove that the last integral is equal to 1. Then it follows

that
∞∑

m=−∞

e−πm
2/x = lim

N→∞

N∑
n=−N

√
xe−πn

2x =
√
x

∞∑
n=−∞

e−πn
2x,

since the last series converges. This proves our Theorem.

Lemma 5.17. Let z ∈ C. Then
∫∞
−∞ e

−π(u+z)2du = 1.

Proof. The following proof was suggested to me by Michiel Kosters. Let

F (z) :=

∫ ∞
−∞

e−π(u+z)
2

du.
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We show that this defines an analytic function on C. We apply Theorem 2.6. First,

(u, z) 7→ e−π(u+z)
2

is continuous, hence measurable, on R × D(0, R). Second, for

every fixed u ∈ R, z 7→ e−π(u+z)
2

is analytic on C. Third, let K be a compact subset

of C, and choose R > 0 such that |z| 6 R for z ∈ K. Then for z ∈ K we have

|e−π(u+z)2 | = e−Reπ(u+z)2 = e−(πu
2+2πuRe z+πRe z2)

6 e−πu
2+2πRu+πR2

= e−π(u−R)2+2πR2

,

and
∫∞
−∞ e

−π(u−R)2+2πR2
du converges. So by Theorem 2.6, F is analytic on C.

Knowing that F is analytic on C, in order to prove that F (z) = 1 for z ∈ C it

is sufficient to prove, for any set S ⊂ C with a limit point in C, that F (z) = 1 for

z ∈ S. For the set S we take R. For z ∈ R we obtain, by substituting v = u+ z,

F (z) =

∫ ∞
−∞

e−π(u+z)
2

du =

∫ ∞
−∞

e−πv
2

dv = 2

∫ ∞
0

e−πv
2

dv.

Now a second substitution t = πv2 yields

F (z) = π−1/2
∫ ∞
0

e−tt−1/2dt = π−1/2Γ(1
2
) = 1.

5.4.3 Proof of the functional equation for the zeta function

Define

ξ(s) := 1
2
s(s− 1)π−s/2Γ(1

2
s)ζ(s).

Theorem 5.8. The function ξ has an analytic continuation to C. For this contin-

uation, we have ξ(1− s) = ξ(s) for s ∈ C.

Proof (Riemann). Let for the moment s ∈ C, Re s > 1. Recall that

Γ(1
2
s) =

∫ ∞
0

e−tt(s/2)−1dt.

Substituting t = πn2u gives

Γ(1
2
s) =

∫ ∞
0

e−πn
2u(πn2u)(s/2)−1d(πn2u) = πs/2ns

∫ ∞
0

e−πn
2uu(s/2)−1du.
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Hence

π−s/2Γ(1
2
s)n−s =

∫ ∞
0

e−πn
2uu(s/2)−1du,

and so, by summing over n,

π−s/2Γ(1
2
s)ζ(s) =

∞∑
n=1

∫ ∞
0

e−πn
2u · u(s/2)−1du.

We justify that the infinite integral and infinite sum can be interchanged. We use

the following special case of the Fubini-Tonelli theorem: if {fn : (0,∞) → C}∞n=1

is a sequence of measurable functions such that
∑∞

n=1

∫∞
0
|fn(u)|du converges, then

all integrals
∫∞
0
fn(u)du (n > 1) converge, the series

∑∞
n=1 fn(u) converges almost

everywhere on (0,∞) and moreover,

∞∑
n=1

∫ ∞
0

fn(u)du,

∫ ∞
0

(
∞∑
n=1

fn(u)

)
du

converge and are equal. In our situation we have that indeed (putting σ := Re s)

∞∑
n=1

∫ ∞
0

|e−πn2u · u(s/2)−1|du =
∞∑
n=1

∫ ∞
0

e−πn
2uu(σ/2)−1du

=
∞∑
n=1

π−σ/2Γ(1
2
σ)n−σ (reversing the above argument)

= π−σ/2Γ(1
2
σ)ζ(σ)

converges. Thus, we conclude that for s ∈ C with Re s > 1,

(5.3) π−s/2Γ(1
2
s)ζ(s) =

∫ ∞
0

ω(u) · u(s/2)−1du, where ω(u) =
∞∑
n=1

e−πn
2u.

Recall that θ(u) =
∑∞

n=−∞ e
−πn2u = 1 + 2ω(u).

We want to replace the right-hand side of (5.3) by something that converges for

every s ∈ C. Obviously, for s ∈ C with Re s < 0 there are problems if u ↓ 0. To

overcome these, we split the integral
∫∞
0

into
∫∞
1

+
∫ 1

0
and then transform

∫ 1

0
into

an integral
∫∞
1

by means of a substitution v = u−1. After this substitution, the

integral contains a term ω(v−1). By Theorem 5.16, we have

ω(v−1) = 1
2
(θ(v−1)− 1) = 1

2
v1/2θ(v)− 1

2

= 1
2
v1/2

(
2ω(v) + 1)− 1

2
= v1/2ω(v) + 1

2
v1/2 − 1

2
.

119



We work out in detail the approach sketched above. We keep for the moment our

assumption Re s > 1. Thus,

π−
1
2
sΓ(1

2
s)ζ(s) =

∫ ∞
1

ω(u)u(s/2)−1du−
∫ ∞
1

ω(v−1)v1−s/2dv−1

=

∫ ∞
1

ω(u)u(s/2)−1du+

∫ ∞
1

(
v1/2ω(v) + 1

2
v1/2 − 1

2

)
v1−s/2v−2dv

=

∫ ∞
1

1
2

(
v−(s+1)/2 − v−(s/2)−1

)
dv +

∫ ∞
1

ω(v)
(
v(s/2)−1 + v−(s+1)/2

)
dv

where we have combined the terms without ω into one integral, and the terms

involving ω into another integral. Since we are still assuming Re s > 1, the first

integral is equal to

1
2

[
− 2

s− 1
v−(s−1)/2 +

2

s
v−s/2

]∞
1

=
1

s− 1
− 1

s
=

1

s(s− 1)
.

Hence

π−s/2Γ(1
2
s)ζ(s) =

1

s(s− 1)
+

∫ ∞
1

ω(v)
(
v(s/2)−1 + v−(s+1)/2

)
dv.

For our function ξ(s) = 1
2
s(s− 1)π−s/2Γ(1

2
s)ζ(s) this gives

(5.4) ξ(s) = 1
2

+ 1
2
s(s− 1)

∫ ∞
1

ω(v)
(
v(s/2)−1 + v−(s+1)/2

)
dv if Re s > 1.

Assume for the moment that F (s) :=
∫∞
1
ω(v)

(
v(s/2)−1 + v−(s+1)/2

)
dv defines an

analytic function on C. Then we can use the right-hand side of (5.4) to define the

analytic continuation of ξ(s) to C. By substituting 1−s for s in the right-hand side,

we see that ξ(1− s) = ξ(s).

It remains to prove that F (s) defines an analytic function on C. We apply as

usual Theorem 2.6. We check that f(v, s) = ω(v)
(
v(s/2)−1 + v−(s+1)/2

)
satisfies the

conditions of that theorem.

a) f(v, s) is measurable on (1,∞) × C. For ω(v) =
∑∞

n=1 e
−πn2v is measurable,

being a pointwise convergent series of continuous, hence measurable functions, and

also v(s/2)−1 + v−(s+1)/2 is measurable, since it is continuous.

b) s 7→ ω(v)
(
v(s/2)−1 + v−(s+1)/2

)
is analytic on C for every fixed v. This is

obvious.
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c) Let K be a compact subset of C. Then there is a measurable function MK(v)

on (1,∞) such that |f(v, s)| 6 MK(v) for s ∈ K and
∫∞
1
MK(v)dv < ∞. Indeed,

choose A > 0 such that |Re s| 6 A for s ∈ K. we first have for v ∈ (1,∞)

0 6 ω(v) 6 e−πv
(
1 + e−3πv + e−8πv + · · ·

)
6 e−πv ·

∞∑
k=0

e−3kπv =
e−πv

1− e−3πv
6 2e−πv

and second, for v ∈ (1,∞), s ∈ K,

|v(s/2)−1 + v−(s+1)/2| 6 v(A/2)−1 + v(−(A+1)/2 6 2v(A/2)−1.

Hence

|f(v, s)| 6 4e−πvv(A/2)−1 =: MK(v).

Further, ∫ ∞
1

MK(v)dv 6 4

∫ ∞
0

e−vv(A/2)−1)dv 6 4 · Γ(1
2
A) <∞.

So f(v, s) satisfies all conditions of Theorem 2.6, and it follows that the function

F (s) =
∫∞
1
f(v, s)dv is indeed analytic on C.
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